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Start time End time Authors Title

8:30 9:00 Registration

9:00 9:10 Conference welcome and logistics

Plenary Chair: I. Daubechies 

9:10 10:00 John Delaney Multi-modal imaging spectroscopy of paintings and illuminated 

manuscripts

Session 1

10:00 10:20 Zahra Sabetsarvestani, Francesco Renna, Franz 

Kiraly, and Miguel Rodrigues

Un-mixing X-ray images with the application in art investigation

10:20 10:40 Jan Blažek, and Barbara Zitová Information separation in art investigation: A survey

10:40 11:00 Shaoguang Huang, Bruno Cornelis, Bart 

Devolder, and Aleksandra Pizurica

Paint loss detection via kernel sparse representation

11:00 11:20 Coffee break

Session 2 Image processing for Photography Chair: S. Jaffard

11:20 11:50 Patrice Abry Anisotropic multiscale representations for an automated and reproducible 

analysis and classification of photographic paper

11:50 12:20 Henri Maître Automatic appreciation of aesthetics in photography: Where are we going?

12:20 13:40 Lunch

13:40 13:50 Group picture

Session 3 Poster pitches Chair: L. Platisa

13:50 13:55 Marie d'Autume, and Enric Meinhardt-Llopis Disrobing Adam and Eve with the linear osmosis model

13:55 14:00 Ana Martins “NO CHAOS, DAMN IT!” Extracting paint maps from Macro-X-Ray 

Fluorescence scanning data to deconstruct Jackson Pollock’s “action 

painting” in Number 1A, 1948

14:00 14:05 Rasha Ahmed Shaheen, Mona Fouad Ali, 

Medhat El-Dabaa

Documentation and digitalizing of royal albumen photographic collection of 

King Farouk, dating from the 19th Century

14:05 14:10 Gjorgji Strezoski, and Marcel Worring OmniArt: A large scale artistic benchmark

Session 4 Imaging tools for artwork diagnostics Chair: M. Martens

14:10 14:40 Hélène Dubois The conservation of the brothers van Eyck’s Ghent Altarpiece

14:40 15:10 Ella Hendriks Transforming conservation

Session 5 New initiatives and collaborations Chair: M. Rodrigues

15:10 15:40 Daniele Zavagno The Visual Science of Art conference: History and aims

15:40 16:00 Collaborative projects

Massimo Fornasier Mantegna Project 4.0: Some novel directions over the work done in the 

Mantegna Project

Miguel Rodrigues Transforming art study, conservation, preservation, and presentation via 

digital technology

16:00 Coffee

16:00 17:00 Session 6 Posters & Demonstrators Chair: L. Platisa

Poster presentations                                                                    Corresponding to the pitch presentations from Session 3   

Laurens Meeus Fast and accurate paint loss detection using deep learning

Gjorgji Strezoski ArtSight: A visual artistic data exploration engine

Roman Sizyakin Detection of cracks in paintings using deep learning

17:00 17:30 Visit to the Ghent Altarpiece restoration studio at the MSK

Evening program

17:30 19:00 Boat & walking tour through the heart of Ghent

19:00 22:00 Conference dinner

Evening presentation by Ingrid Daubechies: Reunited: a digital and art-historical adventure

Combining different imaging modalities to uncover hidden features in paintings                                   Chair: A. Pizurica

Image Processing for Art Investigation Workshop 2018 Program

Fernand Scribedreef 1, 9000 Ghent, Belgium

Auditorium of the Museum of Fine Arts (MSK) in Ghent

June 21-22, 2018

Thursday June 21, 2018

Demonstrators
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Start time End time Authors Title

Session 7

9:00 9:30 Koen Janssens Paintings’ alternations in the past and in the future: Non-invasive X-Ray 

based imaging of subsurface information and how to improve upon it 

9:30 9:50 Barak Sober Iron  age  Hebrew  epigraphy  in  the  silicon  age  - An  algorithmic  

approach  to  study  Paleo-Hebrew  inscriptions

9:50 10:10 R. van Liere, K.J. Batenburg, A. Kostenko, C-L. 

Wang, and I. Garachon

Imaging ancient Chinese ivory puzzle balls: deducing the make Process

10:10 10:30 Ellen van Bork, and Bruno Cornelis The Monitoring of Cracks in Historical Silver with Image Processing 

Techniques

10:30 10:50 Coffee break

Session 8 Frescoes Chair: E. Hendriks  

10:50 11:20 Dubravka Đukanović and Siniša Zeković The renovation and protection of the rich cultural and artistic heritage of 

the Hilandar monastery

11:20 11:50 Massimo Fornasier The Mategna frescoes in Padua: Computer assisted puzzle solving and 

recolorization

11:50 12:10 Simone Parisotto, Luca Calatroni, and Claudia 

Daffara

Mathematical osmosis imaging for multi-modal and multi-spectral 

applications in cultural heritage conservation

12:10 13:30 Lunch

Session 9 Virtual restoration Chair: M. Fornasier

13:30 14:00 Carola-Bibiane Schönlieb Unveiling the invisible - mathematical approaches for virtual image 

restoration

14:00 14:20 Nanne van Noord and Eric Postma Pixel context encoders for painting region inpainting

Session 10

14:20 14:40 Laurens Meeus, Shaoguang Huang, Bart 

Devolder, Maximiliaan Martens, and 

Aleksandra Pizurica

Deep learning for paint loss detection: A case study on the Ghent 

Altarpiece

14:40 15:00 Roman Sizyakin, Bruno Cornelis, Laurens 

Meeus, Maximiliaan Martens, Viacheslav 

Voronin, and Aleksandra Pizurica

A Deep Learning Approach to Crack Detection in Panel Paintings

15:00 15:30 Eric Postma Improving the reliability of CNNs for digital artwork analysis

15:30 15:40 Closing remarks

Deep learning techniques for digital artwork analysis                                                                                 Chair: K. Janssens

Imaging as a tool in understanding creation of the artwork                                                                             Chair: P. Abry

Friday June 22, 2018
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John K. Delaney is senior imaging scientist in the scientific research 

department of the conservation division of the National Gallery of Art, 

Washington. His research focuses on the adaptation of remote sensing 

sensors and processing methods for the study of paintings and works 

on paper. Before joining the Gallery, Delaney was chief scientist for 

the Advanced Sensors Business Unit of the ISR Airborne Systems 

Division of the Goodrich Corporation. He received his BS from the 

Worcester Polytechnic Institute and his PhD from the Rockefeller 

University, and he completed postdoctoral studies at the University of 

Arizona and the Johns Hopkins University School of Medicine. 

Delaney has published more than 75 papers in the areas of imaging and 

spectroscopy. 

When Delaney joined the Gallery in 2007 thanks to funding provided 

by the Andrew W. Mellon Foundation, the Gallery became the first art 

museum to have an imaging scientist on staff. In his role as senior imaging scientist, Delaney was tasked with 

developing and adapting remote sensing imaging cameras and methods and using those advanced digital imaging 

methods to obtain new information that could be used for conservation and art historical research. Following the 

end of the Mellon grant–funded position, Delaney permanently joined the Gallery in 2011. In the years since, 

Delaney and colleagues in the scientific research department have optimized hyperspectral visible and infrared 

imaging cameras and image processing to better visualize painted-over compositions and map the distribution of 

pigments. Additional funding from the Mellon Foundation, Samuel H. Kress Foundation, and National Science 

Foundation has supported the ongoing training by Delaney of fellows in new advanced imaging methods. 

In addition to his work at the Gallery, Delaney also served as a research professor in the Department of Electrical 

and Computer Engineering of the School of Engineering and Applied Science at the George Washington 

University from 2011 to 2013. He is also an associate editor of Heritage Science and was previously an associate 

editor of Studies in Conservation from 2010 to 2017. 

 

 

 

Multi-modal imaging spectroscopy of paintings and illuminated manuscripts 

John K. Delaney, and Kathryn A. Dooley 

The use of non-invasive point measurements with multiple modalities has been shown to yield more complete 

identification of artist materials’ in situ. For example, the combination of x-ray fluorescence elemental analysis 

combined with molecular reflectance and fluorescence spectroscopy can provide information on colorants (both 

inorganic and organic lake pigments) as well as paint binders. Extending this to collect 2-D spatial maps with 

each modality offers unique opportunities to mathematically combine, or fuse, the information derived from all 

the image cubes to yield material maps with higher confidence, as well as provide new image products. In this 

talk we will describe the instrumentation used to acquire such 3-D data sets and show examples of information 

that can be derived from them. The multi-modal imaging system is able to provide XRF image cubes, diffuse 

reflectance image cubes  (400  to  2500  nm),  as  well  as  molecular  luminescence  image  cubes  (400  to  1000 

nm). Using  a  novel  image  registration  program  developed  with  George  Washington University, these image 

cubes can be spatially aligned with the color image, x-ray radiograph, etc. The case studies will highlight the 

potential to mine these data sets for new information. For example, an improved model for ‘virtual removal of 

aged varnish’ will be presented, which was derived from visible reflectance image cubes collected before and 

after the removal of an  aged  varnish  on  a  painting  by  Georges  Seurat  titled Haymakers  at  Montfermeil,  c. 

1882. Other examples will include improved visualization of prior paintings which have been painted over, such 

as the Spanish woman beneath Pablo Picasso’s Blue Period painting Le Gourmet, c. 1901, and earlier drawn and 

painted features found in Andrea del Sarto’s painting Charity, c. 1528 or 1529 that relate to another of his 

paintings. Improved material maps obtained by fusion of XRF elemental maps with pigment maps obtained from 

reflectance imaging spectroscopy of Pacino di Bonaguida’s illuminated manuscript titled Christ in Majesty with 

Twelve Apostles, c. 1320 will also be shown. Finally, all three imaging modalities were used to understand the 

artist’s materials and methods used to create an encaustic Greco-Roman portrait painting from the 2nd century AD 

Egypt. The increasing availability of such image cubes collected in several modalities offers new opportunities 

for the development of new processing algorithms which will be expected to yield new information about 

important cultural objects. 
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Patrice Abry is currently «Senior Scientist» (Directeur de Recherche) for the French 

National Center of Scientific Research (CNRS) at Ecole Normale Supérieure de Lyon, 

France, where he is in charge of the « Signal, System and Physics » statistical signal 

processing research group, within the Physics department. He received the degree of 

Professeur-Agrégé de Sciences Physiques, in 1989, at Ecole Normale Supérieure de 

Cachan and the Ph. D. degree in physics and signal processing from the Claude-

Bernard University, Lyon, France, in 1994.  

Patrice Abry has developed a long standing research program dedicated to the 

multiscale statistical analysis and modelling of scale-free phenomena. His researches 

are motivated by strong interests in integrating theoretical and applied developments, 

with real-world applications including, hydrodynamic turbulence, Internet traffic, 

heart rate variability, neurosciences. 

He is the author of a book on wavelet, scale invariance and hydrodynamic turbulence 

and is also the co-editor of a book entitled Scaling, Fractals and Wavelets.  

Dr. Abry received the AFCET-MESR-CNRS prize for best Ph.D. in signal processing for years 1993–1994. He 

serves in the IEEE SPS Signal Processing Theory and Methods Committee since 2014 as well as in the French 

National Committee for Scientific Research (CoNRS) since 2017. He was also elected IEEE fellow in 2011. 

 

 

 

Anisotropic multiscale representations for an automated and reproducible analysis and classification of 

photographic paper 

Patrice Abry (CNRS DR, Laboratoire de Physique, ENS de Lyon),  Stéphane G. Roux, Nicolas Tremblay, Pierre 

Borgnat (Laboratoire de Physique, ENS de Lyon, France), Stéphane Jaffard (LAMA, Université Paris-Est Créteil, 

France),  Herwig Wendt (IRIT, Université de Toulouse, France), Béatrice Vedel (LMBA, Université de Bretagne 

Sud, France), Andrew G. Klein (Western Washington University, USA), C. Richard Johnson (Cornell University, 

USA), Paul Messier (Yale University, USA), Jim Coddington and Lee Ann Daffner (MoMA, USA)  

Surface texture is a critical feature in the manufacture, marketing, and use of photographic paper. Hence, texture 

characterization of photographic prints can provide scholars with valuable information regarding photographers’ 

aesthetic intentions and working practices. Currently, texture assessment is strictly based on the visual acuity of 

a range of scholars associated with collecting institutions, such as conservators. Natural interindividual 

discrepancies, intraindividual variability, and the large size of collections present a pressing need for computerized 

and automated solutions for the texture characterization and classification of photographic prints. Recently, an 

automated and digital raking light procedure has been designed (by P. Messier et al.) that reveals texture through 

a stark rendering of highlights and shadows.  

The present work aims to provide evidence that the combination of this automatic, computer-based raking light 

based measure of texture with advanced anisotropic multiscale image processing representations permits to 

achieve relevant characterization and classification of photographic paper textures. The intuition behind 

anisotropic multiscale representation, originally developed for measuring rugosity, or irregularities, in physics 

and biomedical applications, consists in analyzing a texture across a collection of views at different scales, or 

resolutions and relies on a change of paradigm: The information is not extracted in what is seen at each scale, but 

rather in how what is seen changes when scales vary.  

In this work, this recent statistical image processing tool is customized for and applied to two different 

photographic paper datasets. For proof of concept, it is first applied to a small-size reference data set of historic 

(silver gelatin, 120 prints) photographic papers that yet combines in purpose several levels of similarity. Second, 

it is used on a large data set (2491 prints) of culturally valuable photographic prints held by the Museum of Modern 

Art in New York. The promising results achieved with this fully automatized and non-supervised procedure for 

the characterization and clustering of photographic paper are interpreted in collaboration with art scholars with an 

aim toward developing new modes of art historical research and humanities-based collaboration.  
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Hélène Dubois is a painting conservator and art historian. She 

trained at the Université Libre de Bruxelles and at the Hamilton Kerr 

Institute, University of Cambridge (UK). She worked at the 

Doerner-Institut in Munich, the J. Paul Getty Museum in Malibu, 

the Royal Museums of Fine Arts in Brussel and the Limburg 

Conservation Institute in Maastricht where she taught conservation 

of Old Masters Paintings. Attached to the Royal Institute for 

Cultural Heritage in Brussels (KIK-IRPA) and to Ghent University 

(UGent), she leads the conservation project of the brothers van 

Eyck’s  Adoration of the Mystic Lamb since October 2016 and is 

researching the material history of the altarpiece for a PhD 

dissertation at Ghent University. 

 

 

 

 

 

 

The Conservation of the Brothers van Eyck’s Ghent Altarpiece 

Hélène Dubois 

Since 2012, the Royal Institute for Cultural Heritage of Belgium has been in charge of the conservation treatment 

of the brothers van Eyck’s altarpiece of the Adoration of the Mystic Lamb (1432). This monumental masterpiece 

has been admired for centuries for its stunningly convincing suggestion of space and light, materials and 

expressions, reflecting extraordinary sensibility and level of technical accomplishment that determined the course 

of western European painting. The tumultuous material history of the altarpiece, marked by wars, civil unrest, 

fires, changes in tastes and values has deeply influenced its condition and its appearance. The conservation 

campaign is carried out in public view by a team of conservators in the Ghent Museum of Fine Arts. The 

discoveries carried through multidisciplinary research involving the conservators, chemical analysis, technical 

imagery, archival and art historical investigations reveal completely unknown, yet fundamental facets of the 

altarpiece. 

This paper will illustrate the discovery of early overpainting campaigns, the diagnostic of the condition the original 

paint layers and the recovery of the original. 
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Dubravka Đukanović, associated professor at the Academy of Arts in 

Novi Sad, University of Novi Sad, Master Academic Study Program 

Conservation and Restoration of works of fine and applied arts. Research 

fellow of the Institute of Architecture and Urban & Spatial Planning of 

Serbia. Architect with more than twenty years of experience in designing 

and conservation. Owner and leading designer of Studio D’ART. Senior 

Expert Architect in the HTSPE-Eurotrends Expert Team for the 

implementation of the EU project for the rehabilitation of the complex of 

the Franciscan Monastery in Bac. Author of a number of papers in the 

national and international professional and academic journals, co-author 

of several publications and author of two monographs – Serbian Orthodox 

Churches of the XVIII and XIX Centuries in Backa (2009) and Architecture 

of Roman Catholic Churches in Vojvodina from 1699 to 1939 (2015). 

Winner of the annual “Ranko Radović Award” for 2010 in the field of the 

theoretical texts as well as several prizes at national competitions in the field of architectural and urban planning. 

Member of the Chamber of Architects of Serbia, DANS, Society of Conservators of Serbia, IIC and Serbian 

National Committee of ICOMOS.   

 

 

 

The renovation and protection of the rich cultural and artistic heritage of the Hilandar Monastery 

Dubravka Đukanović (Academy of Arts in Novi Sad, University of Novi Sad, Serbia) and Siniša Zeković (The 

Provincial Institute for the Protection of Cultural Monuments, Petrovaradin, Serbia) 

For contemporary art conservation practice, the renovation and protection of the rich cultural and artistic heritage 

of the Hilandar Monastery is a great and complex challenge. The access to the material is granted only under 

specific conditions and the works can only be performed in the intervals between daily rituals. Due to the specific 

circumstances and inability to take the objects outside the territory of Mount Athos, the application of modern 

research, and especially conservation techniques, was  limited  to  in situ examination,  using  mobile equipment  

of  small  dimensions,  limited  analysis  of  movable  samples  for  laboratory diagnostics and techniques of 

conservation-restoration work applicable in the conditions of fieldwork.  

Apart from conservation works on numerous individual items, the experts from the Provincial Institute have 

completed three total reconstructions of iconostases since 2004, while a team of experts from the Provincial 

Institute has been commissioned since 2015 on the protection of decorations and most valuable sacred items, kept 

in the main facilities of the monastery – the church of the Entrance of the Blessed Virgin Mary into the Temple 

(1321) and the Grand Dining Room (XII-XIII). The multiannual conservation works on the throne featuring the 

icons of the Virgin with Three Hands, St.  Nicholas and Holy Three Hierarchs, which cover the southwest stone 

pillar started in 2017. It the first phase, the third zone of engraved, gilded elements was conserved and restored. 

The degree of damage of the icon on the east throne – the Virgin with Three Hands (XIV) was established with 

visual inspection, while a more detailed analysis is planned for the forthcoming period.  

The analysis of hidden layers may bring new findings about historical facts and events on the territory of medieval 

Serbia. One such object is King Milutin’s Charter, written in 1324. The text of the charter, written on a parchment, 

was “repainted” by Bulgarian monks from Mount Athos at the beginning of the 19th century. It is still not known 

whether the new base contains a copy of the original text or whether the content of the text was changed. The 

original letters and signs are visible on the parts of the parchment from which the newly-applied layer has fallen 

off. Determining the content of the original text would be of great art-historical and iconographical value. The 

ultimate goal of our work is to determine adequate methodology that would allow the conservators to implement 

the methods of contemporary conservation in the specific working conditions in the monastery. 
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The research of Massimo Fornasier embraces a spectrum of problems in 

mathematical modeling, analysis and numerical analysis. Fornasier is particularly 

interested in the concept of compression as appearing in different forms in data 

analysis, image and signal processing, and in the adaptive numerical solutions of 

partial differential equations or high-dimensional optimization problems. 

Fornasier received his doctoral degree in computational mathematics in 2003 from 

the University of Padua, Italy. There he worked also for the realization of the 

Mantegna Project, i.e., the complete restoration of the Mantegna's frescoes in the 

Eremitani Church in Padua, which were destroyed by a bombing in World War II. 

After spending from 2003 to 2006 as a postdoctoral research fellow at the University 

of Vienna and University of Rome "La Sapienza", he joined the Johann Radon 

Institute for Computational and Applied Mathematics (RICAM) of the Austrian Academy of Sciences where he 

served as a senior research scientist until March 2011. He was an associate researcher from 2006 to 2007 for the 

Program in Applied and Computational Mathematics of Princeton University, USA. In 2011 Fornasier was 

appointed Chair of Applied Numerical Analysis at the Technical University of Munich. 

 

 

 

The Mategna frescoes in Padua: computer assisted puzzle solving and recolorization 

Massimo Fornasier 

In 1944, near the end of World War II, an allied bombing campaign destroyed the Eremitani church in Padua, 

Italy. The church was famous among art lovers for its magnificent frescoes, which included a series by the early 

renaissance painter Andrea Mantegna (1431-1506). Over 88.000 small pieces of painted plaster, of an average 

area of only 4-5 square centimeters, had been lovingly collected and conserved after the bombing; together, they 

accounted for less than 80 square meters – only a very small fraction of the area covered by the frescoes originally. 

From 1992 onwards, art conservation experts attacked the task of cleaning and photographing every piece, sorting 

them and hoping to reconstruct at least some fragments. The herculean task seemed hopeless – until mathematics 

came to the rescue. We developed an approach that made it possible, for each small piece of plaster that still 

showed an element of the design of the fresco, to find where it belonged exactly. The resulting very fragmented 

and mosaic-like reconstruction of the color scheme of each fresco was then used, via another algorithm, to fill in 

the color information for the whole fresco. 
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Ella Hendriks is full Professor of Conservation and Restoration of Moveable 

Cultural Heritage at the University of Amsterdam, The Netherlands).  

From 1999 to 2016 she was Senior Paintings Conservator at the Van Gogh Museum 

in Amsterdam and from 1987 to 1999 Head of Conservation at the Frans Hals 

Museum in Haarlem. In 2007 she collaborated with Prof. C. Richard Johnson, Jr. 

(Cornell University) to organize the first and second IP4AI conferences held at the 

Van Gogh Museum in Amsterdam and Museum of Modern Art, New York. Since 

then she has been fortunate to collaborate with a broad range of experts in the field 

of image processing for projects ranging from the Thread Count Automation Project 

(TCAP) established in 2007, to ReViGo (Reassessing Vincent van Gogh) within the 

Science4arts programme supported by NWO (2012-2017).  

 

 

 

 

Transforming conservation 

Ella Hendriks 

This presentation broadly considers the ways in which image processing is transforming conservation and 

restoration of cultural heritage in terms of both methods and approach. At the University of Amsterdam 

conservation and restoration training programme, past years have witnessed an increased demand for image 

processing expertise involved in research and practice across the nine different tracks of specialisation. This 

together with the speaker’s own projects in the field of paintings conservation, provides a representative picture 

of the types of problem that can benefit from collaboration with image processing specialists (in the broadest 

sense of the word). While by no means an exhaustive survey, it provides an opportunity to stand still and evaluate 

this development from a user’s perspective in the context of this sixth IP4AI conference.   

A primary task of the modern-day conservator is to manage undesirable processes of change in cultural heritage 

objects. A limitation is that we can only analyse the present, while to do this we also need to understand the past 

and to predict the future. Increasingly, image processing plays an important role in all three related areas of 

activity, ranging from diagnostics to preventive conservation and treatment. These concepts will be used as a 

convenient way to structure this talk, in which case study examples of image processing application will be 

grouped according to these three, overlapping areas of conservation practice.  

Diagnostics. Image processing-based methods have greatly expanded the range of diagnostic tools available to 

the conservator. One example is automated mapping of thread count and thread angle in woven fabrics, such as 

canvases used in paintings. This combined information is useful to answer art historical questions relating to 

dating, provenance or attribution, but has also proved informative to the conservator as it helps to distinguish 

features belonging to the original object from later damages and alterations, as examples will demonstrate.  

Combined optical and chemical mapping of art works is especially helpful to support process-based analysis in 

conservation. On the one hand it can help to determine whether certain degradation processes have stabilized or 

are still ongoing, information that is crucial to the conservator’s assessment of condition (an example of metal 

soap aggregation will be given). On the other hand it enables the process of conservation treatment to be 

monitored, in order to evaluate its effects as a basis for adaptive decision-making. For example, while still at the 

developmental stage, a combination of optical coherence tomography (OCT) and reflection mid-Fourier Transfer 

Infrared (mid-FTIR) proves highly promising to visualize the progressive effects of varnish removal on a painting, 

mapping both the area and thickness of the layer(s) removed.  

Preventive conservation. A combination of non-invasive, micro-analytical scanning techniques can also provide 

a ‘risk’ mapping of e.g. light sensitive colour areas in paintings (see paper Koen Janssens et al. in this conference). 

Potentially this opens the way for selective lighting of different parts of a painting, or of paintings that belong to 

different risk category groups in a collection, according to their level of vulnerability. A recent development has 

been to model future states of discoloration in digital visualizations that make the problem tangible. In effect, this 

has taken research on pigment deterioration out of the laboratory and into the stakeholder’s office, where the 

visualizations have been used as a basis for discussions on what constitutes acceptable damage and deciding an 

appropriate lighting policy (example Van Gogh Museum).   

Restorations. In the past, a common goal of ‘restoration’ was to return objects to a past, or perceived original 

state. Nowadays we may question the validity of this approach, while the irreversible removal or addition of 

material required to achieve this goal may no longer be considered an ethically viable option. Image processing 

methods can provide an alternative by creating visualizations of former states of an object, without changing the 
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object itself (therefore offering a solution for objects that are too fragile to withstand handling and manipulation). 

These visualizations can take on various forms-  from computer screen images to physical or virtual 3D replicas 

of the object- and allow different options for restoration to be explored. Also, light can be projected onto the object 

itself to perform a ‘virtual restoration’, reversing effects of colour change on the original. Case examples 

considered in this talk will include 3-D reconstructions of (maritime-) archaeological objects, virtual varnish 

removal from paintings, reversal of colour change in painted surfaces using digital visualisations, and light 

retouching of furniture.  

In those instances when it is decided to physically restore objects, incorporating image processing methods can 

help to improve the efficiency, cost and ethics of the restoration procedure, as well as benefiting the result. 

Examples for this talk will include the use of computer generated recipes for non-metameric inpainting of losses, 

and the use of 3-D scanning and casting/printing technologies for loss compensation. It should be noted that while 

new computer technologies may play an important role in treatment, the traditional skills and judgement of the 

trained conservator remain of paramount importance for the quality of the result. The new technologies may be 

seen to complement existing methods, extending the range of possibilities at the conservator’s disposal.  
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Koen Janssens is full professor of general and analytical chemistry at 

the University of Antwerp in Belgium. He obtained his PhD in 1989 on a thesis 

dealing with the use of Artificial Intelligence techniques for automated treatment of 

X-ray analysis data. Since then, he has been actively making use of strongly focused 

X-ray micro- and nano-beams, produced in large accelerator complexes called 

Synchrotron Storage Rings, for non-destructive materials analysis. Such beams are 

useful to gain information on the distribution and speciation state of (heavy) metals 

in polluted natural materials such as soils, sediments and airborne particulates and in 

industrial materials such as heterogeneous catalysts. A combination of X-ray 

fluorescence spectrometry, X-ray absorption spectroscopy and X-ray diffraction 

usually is employed to characterize these materials in 2D or 3D imaging mode. He 

applies the same suite of techniques for better understanding naturally occurring 

alteration and degradation processes in cultural heritage materials such as historic 

glass, inks and painters’ pigments. In recent years, these investigations on the micrometre scale were augmented 

with macroscopic imaging, performed using mobile scanning equipment by means of millimetre-sized X-ray 

beams. Such imagery has proven to be useful for art historians and art conservators in order to understand better 

both the past and future of works of art.K. Janssens is (co)author of ca 240 scientific papers and has served as 

(co)editor of four scientific books, dealing with non-destructive analysis in the cultural heritage area. He has 

organised several conferences on analytical chemistry, X-ray micro beam analysis and its applications. He is 

currently vice-dean of the Faculty of Science of the University of Antwerp. Since 2016, he was appointed ‘Senior 

Scientist’ (hon.) at the Rijksmuseum, Amsterdam, The Netherlands. 

 

 

Paintings’ alternations in the past and in the future: non-invasive x-ray based imaging of subsurface 

information and how to improve upon it 

K. Janssens, G. Van der Snickt, S. Legrand, F. Vanmeert, S. De Meyer 

In the last decade we (and other groups) have developed and applied the method of Macroscopic X-ray 

fluorescence (MA-XRF) imaging to ca 100-150 oil paintings in diverse musea of fine arts in Europe and the US. 

This series includes works by famous 15-19th century artists Flemish and Dutch artists such as Van Eyck, 

Memling, Rubens, Van Dyck, Rembrandt, Magritte and Van Gogh. Also stained glass windows, illuminated 

manuscripts and artistic drawings can be examined by means of MA-XRF to yield information that is relevant for 

different purposes, be it authentication, art-historical study or conservation.  

MA-XRF shares several useful characteristics with commonly employed methods for paintings’ inspection such 

as X-ray radiography (XRR), Infra-red reflectograhy (IRR) and the more recently developed hyperspectral 

imaging methods that make use of camera’s sensitive to parts of the ultraviolet, infrared and visual wavelength 

spectrum: 

(i) While the X-rays employed energize the material in the irradiated spot (< 1 mm) on the artwork during a brief 

(< 1 s) period, no (discernable) damage results; 

(ii) The penetrative x-rays allow to visualize ‘hidden’ layers in altered paintings that, for various reasons, were 

covered up by paint strata during/after the artwork creation 

MA-XRF differs from XRR and IRR in three important ways: 

(a) it is a scanning method, involving stepwise irradiation and spectral data recording, thus taking (substantially) 

longer than XRR, IRR and more modern full-field imaging methods, to record relevant imaging data, typically 

taking 1-10 h per m2 

(b) it provides multiple elemental images of the investigated painting areas, allowing (sometimes only 

approximate) identification of the inorganic pigments that were employed and their distribution at the brushstroke 

level; the largely orthogonal nature of the data usually permits a straightforward interpretation of the data cube.  

(c) its information depth depends on the energy of the X-ray fluorescence radiation employed, varying between a 

few to hundreds of micrometers, which is in a suitable range to allow superficial and subsurface visualization on 

the projected distribution of various elemental constituents while the less relevant structure of the ground 

layer/substrate panels usually is not or only vaguely observed. The strong and weak points of MA-XRF (and its 

more recent extensions) for visualization of different types of paintings alterations will be illustrated by examples 

involving artworks by the above-mentioned painters; in each case, the benefits that might be gained by 

(automated) post-processing of the data, e.g. towards noise reduction, feature extraction and/or visualization of 

anomalous patterns will be addressed. 
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Henri Maître is an emeritus professor at Telecom ParisTech. He has taught there 

digital picture processing, was Head of Department and Deputy Director for 

Research.  

His research included works on digital holography, image analysis, image 

understanding and computer vision, with applications in the domains of medical, 

satellite and fine arts image processing. Present work concerns the relation 

between Aesthetics and Photography.  

 

 

 

 

 

 

Automatic Appreciation of Aesthetics in Photography: Where are we going? 

Henri Maître 

Under the impulse of machine learning techniques, digital aesthetics assessment received a renewed interest in 

recent years. In the last 3 years, deep neural networks outclassed hand-crafted feature methods based on image 

processing and classification. Since then, a handful of studies claim their capacity to separate nice images from 

the run of the mill production and exhibit scores of almost 80 % agreement with human experts. But what do these 

methods measure? Implicitly they are based on the "objectivist" tradition of aesthetics dating back to the Greek 

philosophers, and highly influential on the artistic field up to the 18th century. However, the "subjectivist" point 

of view, as pioneered by Locke and Burke gained in popularity in the 19th and 20th centuries. Rested on the 

psychoanalytic school, then by experimental psychology and social studies, and at last in recent days by neuro-

biology (and the so called "neuro-aesthetic" trend), the "subjectivist" school gained in support in the scientific 

community, ... but not in the image-processing  and artificial intelligence body! We will show how the history of 

"scientific beauty evaluation" since the early works of C. Henry (1885) and G. Birkhoff (1933) until DNN is 

indeed following an identical slope where only few attention is paid to the viewer when most of the literature on 

aesthetics tells us that other tracks may be more valuable.   
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Eric Postma is a professor in Artificial Intelligence at the Cognitive Science 

& AI department at Tilburg University and at the Jheronimus Academy of Data 

Science in ‘s-Hertogenbosch. 

He received his M.Sc. in 1989 at the University of Nijmegen; his thesis about 

a connectionist model of implicit and explicit memory was largely based on an 

internship at Leiden University. His Ph.D. in 1994 at Maastricht University 

concerned a biologically inspired model of covert attention and it served as an 

inspiration for his current research, which focusses on the use of data science 

(machine learning) in image recognition and cognitive modelling. 

In 2008 Postma and his team ranked second in the annual “Academische 

Jaarprijs” with a presentation on the breakthroughs of digital painting analysis. 

Together with Laurens van der Maaten, he received the AAAI-08 Most Innovative Video Award for a scientific 

video of the digital painting analysis. Currently, Postma is coordinating the REVIGO project. Over the years, his 

main interest remained human perception and cognition, and the modelling thereof with AI techniques. Professor 

Postma (co-)supervised some 70 M.Sc. and 20 Ph.D. students. He has published in numerous cognitive science 

and AI journals. 

 

 

 

 

Improving the reliability of CNNs for digital artwork analysis 

Eric Postma 

The use of convolutional neural networks (CNNs) for the digital analysis of artworks is now commonplace. 

Although CNNs achieve superior performance in a wide variety of visual tasks, their internal models are fallible 

which can give rise to erroneous predictions. CNNs misclassify adversarial instances (i.e., dataset instances that 

are intentionally distorted by small perturbations), which indicates that their successful performances on visual 

tasks are based on visual cues that are inferior to those of humans. Clearly, this limitation of CNNs hampers their 

applicability on the domain of digital artwork analysis. The presentation reports on our attempts to encourage 

CNNs to employ human-like visual cues. We show that more human-like cues give rise to improved predictions 

and strengthen the ability to deal with adversarial instances. With the improvement, CNNs become more suitable 

to support in the analysis of artworks. 

  

https://www.tilburguniversity.edu/education/bachelors-programs/cognitive-science-and-artificial-intelligence/
https://www.tilburguniversity.edu/education/bachelors-programs/cognitive-science-and-artificial-intelligence/
http://www.tilburguniversity.edu/
http://www.jads.nl/
http://www.jads.nl/
https://lvdmaaten.github.io/
https://www.nwo.nl/en/research-and-results/research-projects/i/62/8162.html
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Carola-Bibiane Schönlieb is a Reader in Applied and Computational Mathematics 

at the Department of Applied Mathematics and Theoretical Physics at the University 

of Cambridge (UK). There she heads the Cambridge Image Analysis Group, is 

Director of the Cantab Capital Institute for the Mathematics of Information and of the 

EPSRC Centre for Mathematical Imaging in Healthcare, Fellow of Jesus College, 

Cambridge and a Faculty Fellow of the Alan Turing Institute. 

Carola graduated from the Institute for Mathematics, University of Salzburg (Austria) 

in 2004. From 2004 to 2005 she held a teaching position in Salzburg. She received 

her PhD degree from the University of Cambridge in 2009. After one year of 

postdoctoral activity at the University of Göttingen (Germany), she became a Lecturer 

in at DAMTP in 2010, promoted to Reader in 2015. 

In her research, she is interested in the interaction of mathematical sciences and 

imaging. She studies non-smooth and possibly non-convex variational methods and nonlinear partial differential 

equations for image analysis and inverse imaging problems, among them image reconstruction and restoration, 

object segmentation, and dynamic image reconstruction and analysis such as fast flow imaging, object tracking 

and motion analysis in videos. Moreover, she works on computational methods for large-scale and high-

dimensional problems appearing in, e.g. image classification and 3D and 4D imaging. 

 

 

 

Unveiling the invisible - mathematical approaches for virtual image restoration 

Carola-Bibiane Schönlieb 

In this talk I will discuss mathematical approaches based on partial differential equations and variational models 

for the virtual restoration of paintings and illuminated manuscripts. The latter in particular provide an interesting 

opportunity for digital manipulation because they traditionally remain physically untouched. Showcasing 

restoration examples we have derived in collaboration with the Fitzwilliam Museum in Cambridge, I will also 

explain the main mechanisms behind the mathematical methods used.  

My presentation will include joint works with Spike Bucklow (Hamilton Kerr Institute, Cambridge, UK), Luca 

Calatroni (Ecole Polytechnique, Paris, Franca), Marie D’Autume (ENS Cachan, Paris, Franca), Rob Hocking 

(Faculty of Mathematics, Cambridge, UK), Stella Panayotova (Fitzwilliam Museum, Cambridge, UK), Paola 

Ricciardi (Fitzwilliam Museum, Cambridge, UK) and Simone Parisotto (Faculty of Mathematics, Cambridge, 

UK). 
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Daniele Zavagno has a master degree in Art Conservation from 

the University of Udine and a Ph.D. in Experimental Psychology 

from the University of Padoa (Italy). He worked as a postdoc at 

the University of Padoa, as research associate at NEC Research 

Institute (now NEC Laboratories America) in Princeton and at the 

University of Maryland, College Park (USA). He was visiting 

scientist at the University of Nagoya and visiting faculty at 

Tohoku Gakuin University (Japan). He is currently associate 

professor at the University of Milano-Bicocca. 

 

 

 

 

The Visual Science of Art Conference: History and aims 

Daniele Zavagno and Rossana Actis-Grosso 

The Visual Science of Art Conference was born in 2012 when Baingio Pinna organized a satellite meeting to the 

36 th European Conference on Visual Perception (ECVP) held in Alghero, Italy. Since then the conference has 

continued to be organized as a satellite conference to ECVP, though the two sister events are sometimes organized 

by different people, though in the same city. Hence, like ECVP, VSAC does not have a stable location nor a stable 

organization. Its flavour changes and is strongly influenced by the locations and the organizers. In 2014 it was 

held in Belgrade, in 2015 in Liverpool, in 2016 in Barcelona, and in 2017 in Berlin. In 2018 ECVP comes back 

to Italy, and will take place in Trieste. 

The aims of the conference are conveniently summarized by each year organizers: “There is a growing interest in 

studying interactions between perception and art [...] VSAC welcomes all kinds of work and approaches, from 

phenomenological to biological and computational, exploring the link between the science of perception and the 

arts.” (http://ecvp.org/2015/sac.html). “The study and production of Art has always fascinated both artists and 

scholars in equal measure throughout history. Nevertheless, in the 20th century there has been little 

encouragement for artists and scientists to meet and collaborate. Fortunately this state of affairs is currently 

changing” (http://www.ub.edu/ecvp/about-vsac). “Its main focus is to better connect the communities of visual 

scientists and artists in order to deepen our understanding of aesthetic phenomena. The VSAC is an ideal venue 

to debate and collaborate on all topics associated with the perception and evaluation of artworks 

(https://vsac2017.org). Summarizing, the aim of VSAC is that “of connecting the communities of visual scientists 

and artists to promote cross-fertilization between the two domains”: open as it is to all those who are interested in 

art, “VSAC invites all people that connect visual perception and the arts (e.g., empirical, experimental, 

philosophical, phenomenological, computational approaches)” (http://www.vsac2018.eu). 

http://ecvp.org/2015/sac.html
http://www.ub.edu/ecvp/about-vsac
https://vsac2017.org/
http://www.vsac2018.eu/


Information separation in art investigation; a survey

Jan Blažek, Barbara Zitová.
Dept. of Image Processing, Institute of Theory of Information and Automation, The Czech Academy of Sciences, Czech Republic

Abstract— The goal of artwork analyzes is often to detect of
pentimenti, retouches, overpaintings, or varnishes in order to un-
derstand a painting structure. A common model of a painting used
for interpretation of an artwork multimodal dataset is based on
its multilayer characteristics. Another possibility how to address
an artwork structure is to study an information gain of a partic-
ular modality. We have developed a new approach [2] for the in-
formation gain extraction and demonstrated its applicability. We
present a comparison of four methods for the information separa-
tion [4, 1, 3, 2] applied on a multimodal dataset. Their ability to
uncover concealed features of paintings will be presented together
with their requirements and limitations. The separation limits will
be shown using a concept of the intensity correspondence matrix
(ICM), which can well describe the correlation and the mutual in-
formation. ICM also gives evidence of possibility to achieve an
effective signal separation.

1 Introduction
The general problem of multimodal datasets (if we neglect the
major problem of their registration) is their very high cross-
modal correlation caused by the principle of reflection or trans-
mission measurements. The information content of a painted
surface affects all radiation passing through; reflectance in the
visible part of the spectra (VIS) as well as penetrating modali-
ties (terahertz (THz), X-Ray (RTG), near-infrared (NIR)). The
contrast of deeper layers is significantly lowered and often falls
down to the level of noise. Thanks to this, the modal images
are often hardly readable. Moreover, they can go to be com-
pletely useless for art investigation (there are exceptions from
this concept e.g.[5]).

The identification of features of the covered painted layers is
relevant task for image processing. For this purpose the meth-
ods for a signal separation come to the scene. Making an as-
sumption, that the VIS modality is less penetrating than the
THz, the X-ray or the NIR, respectively, we can assimilate the
idea of painted layers. While the VIS modal image is affected
just by the surface "layers visible in VIS modality" the more
penetrating modalities can be affected also by "some deeper
layers" too. For simplicity, we split the painting into two parts:
the surface or top layer which represents the layers affecting
VIS reflectogram and the layer underneath which contains ev-
erything else.

In our survey we would like to compare four methods [4,
1, 3, 2] used for the multimodal dataset separation in order to
visualize concealed features hidden in the images obtained in
penetrating modalities.

2 ICM and its patterns
We offer a new perspective to signal separation by an inten-
sity correspondence matrix (ICM), which can be used as the

Figure 1: A 2D histogram of the intensities correspondence. In the area of
VIS intensity level 230 there are two peaks. The low intensity in NIR corre-
sponds with underdrawings while the high intensity come from areas without
underdrawings. Such dataset is separable.

common denominator for all mentioned studies. Moreover, the
patterns for ICM describe the problems and the limits of the
information separation of a multimodal dataset.

The ICM is a matrix, which contains the frequency of cor-
respondent pixel(s) intensities of two different modalities. As
a matrix hyper-column we name a VIS vector while a hyper-
row denotes a vector in a target modality. The number of
hyper-rows and hyper-columns corresponds to the intensity lev-
els recognized in each modality, while the dimensionality of the
hyper-row and hyper-column is given by the pixel vector length
and the pixel neighborhood size taken into account. E.g. for
two modalities with intensity levels l ∈ L = {0, 1, 2, ..., 255}
the ICM is 2D histogram with ‖L‖ = 256 bins in both dimen-
sions (see Figure (1)) while for approach in [3] we have 6D
histogram with (n× d× ‖L‖)2 bins, where n is the number of
pixels in the patch and d the length of per pixel intensity vector.

The visualization (if possible) of the (low) dimensional ICM
can give us a notion of the potential separability effectiveness.

In the ICM, it is easier to recognize more probable corre-
spondences of modal vectors from the less probable ones in
the context of modality. In general, the dataset defines a map-
ping between VIS and the second modality. But an algorithm
for separation is just a function (see Figure (2)). The discrep-
ancy between the mapping and the function causes that all the
corresponding intensities in the target modality (for one hyper-
column) are reduced by the separation function to just one out-
put vector. If we ask for the effectiveness of mapping to func-
tion reduction we can recognize peripheral but relevant patterns
of the ICM:

• The good case - the highest peaks in ICM hyper-columns
correspond to the top layer effect in both modalities
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Figure 2: Two successfully trained transfer functions from the intensity in the
VIS to intensity in the NIR. The purple line demonstrates how non-trivial such
function can be. On the contrary, the red one is an example of the identity like
function. Both lines were trained on the dataset presented in [2], the purple one
on the dataset in the Figure (10), the red line on the dataset in Figure (9). The
VIS input were reduced to the one dimensional intensity gray values.

• The bad case - multiple peaks - several relevant peaks per
hyper-column with similar frequencies

• The bad case - smooth distribution - uniform distribution
of values per hyper-column

Our results [2] highlight the problem of separability based
on the number of materials and their mixtures in the dataset as
well as the importance of correlation of both input modalities.

3 Generalization
We connect the presented approaches with the model of ICM,
because the ICM and our approach [2] can distinguish cases
when the information obtained from the NIR or the X-ray can
be effectively separated and when this is impossible.

Firstly we reduce of the problem of the estimation of the
separation function to the problem of searching corresponding
vector in NIR or X-ray for a vector in VIS. This means an as-
signment of the hyper-row to a hyper-column in ICM. An as-
signment of these vectors to all hyper-columns defines the ap-
proximation function converting the top layer information in
the VIS modality to the top layer information in the second
modality.

In the Gooch’s and Tumblin’s paper [4] authors estimate the
target function for each mean-shift based segment. For the
whole segment just one X-ray vector is defined, which is com-
puted as the mean value of the segment in the X-ray. This cor-
responds to the assignment of an hyper-column to the mean
value of relevant hyper-rows. For the application of the method
there must be just one significant peak per each hyper-column,
otherwise, the mean value which is probably irrelevant will be
taken as the X-ray representation.

The method in our paper [2] for a hyper-column extracts the
hyper-row which minimizes the square error of approximated
and real vectors. In an ideal case this is the most probable
hyper-row. Our experiments demonstrated that this peak must
be significantly higher than any other hyper-row frequency in
the same hyper-column.

In the paper of Anitha et al. [1] the mutual entropy of an
approximated top layer is minimized and the entropy of XRF
information gain is maximized. This approach, in most cases,
takes the highest peak in the hyper-column as the XRF repre-
sentation. Other peaks in the hyper-column and low frequency
values around them are put into the under-paintings category.
Other selections of the hyper-column representative are also
possible, mostly due to the applied regularization, but they need
custom explanation and their stability is lower.

The unsolvable problem for our [2] approach is an existence
of more than two peaks per hyper-column. Because in such
case, false positives will be produced in the separated signal. A
robustness of Anitha’s et al. [1] approach is here improved by
the wavelet decomposition which causes that a pixel neighbor-
hood also affects output Cu and Cs intensities. But the pixel
neighborhood itself does not influence the estimation of an ap-
proximation function.

The last approach of Deligiannis et al. [3] includes the in-
fluence of a pixel neighborhood into the approximation estima-
tion. The authors use the ICM not only per one pixel inten-
sity vector but they include into one hyper-column/row pixel
neighborhood. With the raw pixel intensities this will cause
a curse of dimensionality which in the extreme case can pro-
duce an unstable algorithm. The authors solve this using the
coupled dictionaries with limited number of words and limited
linear combination of those words. A notion what is happening
here is more difficult, because more dimensions with differ-
ent meaning are included into our ICM concept. In the optimal
case the more dimensions and the different pixel context moves
the peaks in hyper-space, defined by hyper-column dimensions,
close to each other and a more relevant representative vector
could be selected. However, the evaluation of this hypothesis
is out of the scope of our paper. In general, stability of this ap-
proach can be negatively affected more than all previous meth-
ods by decreasing common information in analyzed modalities
due to the minimization in higher dimensional space. As we
presented in our study [2] the maximum of the second modal-
ity information gain is around 10%. This condition is for X-ray
and XRF modalities hard to meet. In our case, these 10% limit
also includes the noise from both modalities.

4 Conclusion
The separation of the modality information to the top layer and
the information gain is in all referred studies done, in princi-
ple, by an approximation function. This function estimates the
general mapping between modalities which we analyze by the
ICM. The computed function in the ICM is realized by hyper-
column → hyper-row pairs. We have pointed out that there
exist patterns in the ICM which cannot be separated by any
function, but the ICM in such cases can be constructed in dif-
ferent way. In [3] the ICM is constructed with respect to the
pixel neighborhood while the sparsity of such ICM is reduced
by dictionary code-words and patch representation rules.

For further research an identification of the bad patterns of
ICM as well as an identification of methods limits is crucial.
We recommend to test separation methods on phantoms, where
the statistical ground truth would be known and non-trivial.
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Disrobing Adam and Eve with the linear osmosis model

Marie d’Autume1, Enric Meinhardt-Llopis1.
1 CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France.

Abstract— The linear osmosis model, an alternative to Poisson
editing, reconstructs a composite image from an input generally
given by the drift fields, invariant to contrast changes, extracted
from one or several images. It is well adapted to tasks where the
input images contrast vary wildly, as is often the case for multi-
spectral images. We show that its stationary local elliptic formula-
tion with mixed boundary conditions is particularly appropriate
for the task of digitally removing over-paint in illuminations for
which we dispose of underlying information provided by infrared
imaging.

1 Introduction
The osmosis framework was first introduced in [1], [2] as a new
model for compact image representation, shadow removal and
seamless image cloning. A drift-diffusion PDE problem, the
linear osmosis filter is particularly well adapted to tasks where
the input images contrast vary wildly, as is the case for the ap-
plication to image fusion. Recently it was successfully used
to solve the light balance problem in Thermal-Quasi Reflec-
tography imaging [5]. Yet in [3], we showed that the osmosis
parabolic equation can be advantageously replaced by a the sta-
tionary elliptic equation derived from its stable state

∆u = div(du),

where d is the input vector field and u is the image to be recov-
ered under appropriate boundary conditions. For dv = ∇v/v,
v is a solution of the elliptic equation. For this reason the au-
thors in [1] defined it as the canonical drift vector field of the
image v. It is because dv is invariant to multiplicative changes
of v that the linear osmosis model is so successful with input
images with different contrast.

Multispectral imaging now allows us to look under the lay-
ers and recover under-drawings or covered up areas of a paint-
ing. These multispectral images usually have very different
dynamic range which makes he osmosis equation particularly
well suited to deal with them. Therefore we propose to apply
this model to the task of digitally removing over-paint in illu-
minations from the primer of Claude de France, a manuscript
from the Fitzwilliam museum 1. The illuminations illustrating
Adam and Eve’s creation, temptation and fall from grace were
censored by a later owner who had some veils and leaves added
to hide their nakedness. But the infrared reflectogram available
on the museum website gives some information on the details
hidden by the added pigments. It is tempting to try and combine
the informations of the colour image and infrared reflectogram
to obtain an image closer to the illumination in its original state.

In the following we first recall some theoretical results for
the elliptic linear osmosis problem. Then we describe how this

1The images are freely available on the museum website:
http://www.fitzmuseum.cam.ac.uk/illuminated/manuscript/discover/the-
primer-of-claude-of-france/section/panel-intro/folio/page-4/section/panel-
intro

Figure 1: From left to right: colour image, infrared reflectogram, mask and final
result. In the mask, the red lines correspond to Neumann boundary conditions
and the white line correspond to pure diffusion.

model is typically used for the tasks of seamless cloning and
shadow removal. And finally we explain how we applied it to
this problem of digital restoration.

2 Theoretical results

Here we briefly recall some theoretical results that we first
enunciated in [3].

Proposition 1. Let 0 < α ≤ 1. Let D be a C3 domain. Let
d ∈ C3(D), g : D → R+∗, g ∈ C2,α(D). Then the elliptic
Dirichlet problem{

∆u = div(du) on D

u = f(x) on ∂D
(1)
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has a unique solution u ∈ H3(D).

Remark 1. For some applications it can be useful to have
mixed boundary conditions. In this case we replace the con-
dition u = f(x) by 〈∇u− du,n〉 = 0 on part of the boundary
∂D.

We adopt the discretization proposed by Weickert et al. [1].
We consider a grid size h = 1 in x and y direction. To compute
the divergence of d we discretize d1 on the grid translated by
half a pixel in the vertical direction and d2 on the grid translated
by half a pixel in the horizontal direction.

Definition 1. Let v be a positive discrete image, we define the
discrete canonical drift vector field du by{

d1,i+ 1
2 ,j

=
2(vi+1,j−vi,j)
vi+1,j+vi,j

d2,i,j+ 1
2

=
2(vi,j+1−vi,j)
vi,j+1+vi,j

(2)

http://www.fitzmuseum.cam.ac.uk/illuminated/manuscript/discover/the-primer-of-claude-of-france/section/panel-intro/folio/page-4/section/panel-intro
http://www.fitzmuseum.cam.ac.uk/illuminated/manuscript/discover/the-primer-of-claude-of-france/section/panel-intro/folio/page-4/section/panel-intro
http://www.fitzmuseum.cam.ac.uk/illuminated/manuscript/discover/the-primer-of-claude-of-france/section/panel-intro/folio/page-4/section/panel-intro


This yields the osmosis equation

Lui,j = ui+1,j

(
1−

d1,i+ 1
2
,j

2

)
+ ui−1,j

(
1 +

d1,i− 1
2
,j

2

)

+ ui,j+1

(
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d2,i,j+ 1
2

2

)
+ ui,j−1

(
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d2,i,j− 1
2

2

)

− ui,j

(
4 +

d1,i+ 1
2
,j − d1,i− 1

2
,j

2
+

d2,i,j+ 1
2
− d2,i,j− 1

2

2

)
(3)

We will from now on assume that d is reasonably small,
namely

|d1(x)| < 2, |d2(x)| < 2, ∀x ∈ Ω, (4)

thus keeping the weights of all four neighbours of ui,j positive
in (3). This condition is always satisfied when d is a canonical
drift vector field of a positive image.

To write this discretization in a more compact notation, we
replace the double indexing in each pixel (i, j) ∈ {0, . . . , h −
1}×{0, . . . , w−1} by a single index k = i+ jh and assemble
all unknown grey values in a single vector u ∈ Rwh and end up
with the linear system

Au = b (5)

where A is a pentadiagonal sparse matrix whose nonzero ele-
ments are detailed in [3] and b is a vector of the same size as u
that encodes the Dirichlet boundary conditions.

Proposition 2. Let d ∈ R(w+1)h×Rw(h+1) such that ‖d‖∞ <
2. Then the matrix A corresponding to the mixed boundary
problem (5) derived from the discretisation (3) is invertible.

3 Seamless cloning and shadow re-
moval

The osmosis model is typically used to create a new image by
modifying and combining the canonical drift-vector fields of
one or more images.

For the seamless cloning case where one wants to paste part
of an image f in the subdomain D of an image g, the problem
is solved on D with d = df in D, d = (df + dg)/2 on ∂D.

For the shadow removal problem, the problem is solved on
the subdomain of the image g where there is a shadow to re-
move with d = dg except on the edge of the shadow where
it is put to zero. Indeed a shadow can be reduced as a multi-
plicative change in the domain of the shadowed region of the
image while the canonical drift vector field is invariant to multi-
plicative change. The presence of the shadow is therefore only
encoded in the drift vector field on the edge of the shadow.

But as we noted in [3], because of the diffusion occurring
on the edge of the shadow from having put the drift-field to
zero, this solution only works for cast shadows. For attached
shadows, we enforce Neumann boundary conditions on the
edge that separates the lit part of an object from its unlit one,
Neumann boundary conditions ensuring that no exchange takes
place across the boundary.

4 Application to the primer
The problem of digitally removing the over-paint can be viewed
as a combination of the applications previously described when
one has access to a registered infrared reflectogram of the illu-
mination. The quality of the result and the complexity of the

problem are of course directly linked to the pigments used and
the wavelength chosen for the infrared reflectogram.

In the ideal case, the pigments added do not appear on the
infrared reflectogram while the colours to be restored are per-
fectly encoded in it. In this case the problem is reduced to a
simple seamless cloning application with Dirichlet boundary
conditions.

Such an ideal case is however uncommon. The illuminations
of the primer provide us with several typical issues. First, in
the nice case where the added pigments do not appear on the
infrared reflectogram, some original pigments can also be al-
most absent in the infrared reflectogram. This is the case in
the first illumination displayed in figure 1. The colour distinc-
tion between the original fig leaves and the skin is slight on the
infrared reflectogram. Simply following the seamless cloning
method lead to an output image where colours are similar on
both sides of the boundary. Thus to ensure that the skin colour
and the green of the original fig leaves do not mix, we enforce
Neumann boundary conditions along the edges involved (the
red lines in the mask).

Another issue is illustrated by the second illumination of
Figure 1. Some added pigments appear on the infrared re-
flectogram. But if the added layer has little to no texture dis-
cernible on the infrared and the original image appears by trans-
parency it can be considered as a shadow on the infrared reflec-
togram. Then we add a shadow removal component to our ear-
lier method: we replace the drift-field of the RGB image by the
drift-field of the infrared reflectogram on the subdomain to be
restored but we negate the drift-field on the edge of the added
layer (white lines in the mask). Still any texture from the added
cloth present in the infrared image appears in the final result, as
can be seen by the stain on Adam’s hip. But it is small enough
that the result is still visually acceptable.

Finally in the case where the over-paint contains too much
texture appearing in the infrared reflectogram, our method can-
not give any good result. A possible solution may be to identify
the pigments of the over-paint and select a more adapted wave-
length for the infrared reflectogram.

5 Conclusion

We proposed a method to digitally remove over-paint from an
illumination. This method requires some patient work from
the user for the mask creation and is heavily dependent on the
infrared wavelength. For the illuminations from the primer that
we worked on, the results were rather satisfying but the method
should be tested on a larger dataset.
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Abstract— Automatic paint loss detection is desired for sup-
porting conservation/restoration treatments of paintings. Firstly,
producing condition reports with appropriate damage surveys re-
quires now a lot of manual work from the restorers. Secondly,
paint losses have to be accurately detected prior to running virtual
restoration. Large variation of paint loss in size, shape, intensity
as well as varying and complex background make this problem
a challenging task. We develop a multimodal paint loss detection
method based on sparse representation, which incorporates the in-
formation from multiple imaging modalities in a high-dimensional
kernel feature space and makes use of the spatial context. To cope
with unreliable labelled data, we introduce a majority voting ap-
proach. Experimental results with the data set of the Ghent Altar-
piece demonstrate the effectiveness of the proposed approach.

1 Introduction
Digital painting analysis has been a rapidly growing field, at-
tracting a lot of interest recently in the signal processing com-
munity [1]. The tasks such as characterization of painting style
and forgery detection [2, 3], crack detection [4], authorship
identification [5], classification of ancient coins [6], canvases
[7] and portraits [8], removal of canvas patterns [9] and inpaint-
ing [10, 11] have demonstrated the great potential of digital im-
age processing techniques.

Loss of paint is typically caused by abrasion and mechani-
cal fracture. In old oil paintings, paint losses were often over-
painted during various restoration campaigns. Modern conser-
vation treatments typically require not only removal of old var-
nish, but also removal of old retouches and overpaint, which
may reveal paint losses underneath [13]. Detection of such
paint loss areas is of great importance to painting conservators
for estimating the extent of the damaged area, which needs to
be maintained for documenting purposes, but also as a crucial
step for virtual inpainting to provide simulations for the actual
restoration. Despite the importance of automatic paint loss de-
tection, this problem has received little attention in the liter-
ature so far. Nowadays, paintings are typically scanned with
a multitude of imaging modalities. During restoration cam-
paigns, additional scans are typically made at various stages
of the rest oration treatment. Examples are shown in Fig. 1.
(a) - (e). We want to exploit such multi-modal information to
detect paint losses more reliably. Our approach will be based
on constructing (training) a dictionary of prototypes that can be
used to effectively, i.e. sparsely, represent paint loss samples.

Sparse Representation Classification (SRC) [14] proved to
be effective in various image classification tasks, especially in
computer vision and remote sensing. It assumes that each test

sample can be sparsely represented as a linear combination of
atoms from a dictionary which is constructed by the selected
training samples. Directly applying SRC to our task results
in poor performance due to the large variability of paint loss,
and complex background. To cope with these challenges, it is
necessary to incorporate appropriately both spatial context and
inter-modal dependencies. Our previous work employed sev-
eral spatial features within local patches and achieved a good
detection performance [13]. However, hand-crafting such fea-
tures leaves much choice and would involve ad-hoc choices and
a lot of manual tuning. Therefore, in this paper we propose a
multimodal paint loss detection method based on sparse rep-
resentation that directly exploits the information from multiple
imaging modalities in the kernel feature space and integrates
the spatial information of context into the model.

2 The proposed method
The multiple imaging acquisitions are typically captured via
different imaging devices and often have different resolutions.
Thus image alignment for all the modalities, which is also
called image registration, should be first completed. Here we
use a joint photometric and geometric image registration tech-
nique [15] to register these images. We concatenate the pixels
within a square window in the registered data cube into a vec-
tor. By using a kernel function, the vector is projected to a
high-dimensional kernel feature space. Next to the two classes:
‘paint loss’ and ‘background’, we specify a third class ‘crack’,
which is by art restorers treated differently than larger portions
of missing paint called paint loss.

The modified SRC model with respect to sparse coefficients
of x ∈ Rm in the projected kernel feature space is

α̂ = argmin
α

‖φ(x)−φ(D)α‖2 s.t. ‖α‖0 < K0, (1)

where φ : Rm → F ⊂ Rm̂ is an implicit mapping function
that projects x to a higher dimensional space; φ(D) = [φ(d1),
φ(d2), ...,φ(dN)] is the dictionary in the projected space and
di ∈ Rm (i = 1,2, ...,N) are the training samples. Once the
sparse coefficients are calculated, the class-specific residuals
can be computed by

ri(φ(x)) = ‖φ(x)−φ(Di)α i‖2

= 〈φ(x)−φ(Di)α i, φ(x)−φ(Di)α i〉1/2

= (κ(x,x)−2α
T
i KDi +α

T
i KDiDiα i)

1/2, (2)

where κ : Rm × Rm → R is a kernel function defined by
κ(xi,xj) = 〈φ(xi),φ(xj)〉; KDi ∈RNi is a vector associated with
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Figure 1: Top row: multiple imaging scans, which include (a) macrophotography before cleaning, (b) macrophotography after cleaning, (c) infrared macropho-
tography before cleaning, (d) infrared reflectography after cleaning and (e) X-radiography before cleaning. Bottom row: (f) Annotated patch 1 used for training,
(g) detection map obtained by applying SRC, (h) detection map obtained by the proposed method, (i) inpainting results using the method of [12] with the SRC
map from (g) and (j) inpainting result with the map obtained by our method.

class i in KD ∈RN = [κ(di,x), · · · ,κ(dN,x)]T ; KDiDi ∈RNi×Ni

is a matrix corresponding to class i in KDD ∈RN×N with entries
KDD(i, j) = κ(di,dj) and α i is a vector associated with class i
in α . Then we label the class of a test sample by

class(x) = argmin
i=1,2,3

ri(φ(x)). (3)

We denote by Mapcrack the obtained binary crack map. By
collecting all the residuals ri(φ(xi)), we form the residual cube.
Here we denote by R ∈ RM×N×3 the reshaped residual cube,
where each layer corresponds to one class.

Typically, paint losses will occupy an area larger than a sin-
gle pixel. Hence, pixels within a relatively small neighbour-
hood are likely to belong to the same class and share sim-
ilar sparse representation coefficients. Therefore we apply a
smoothing filter to each layer of the residual cube to make the
coefficients of neighbouring pixels similar to each other. In par-
ticular, we use for this purpose a weighted least square (WLS)
[16] filter. The binary paint loss map, Map′ , can be calculated
by selecting the smallest smoothed residual. This smoothing
has an adverse effect on thin cracks, which tend to be assigned
to paint loss (or to background). To solve this, we use the crack
map Mapcrack generated prior to smoothing, as follows

Map = Map
′ �Mapcrack. (4)

The training samples in D of (1) play an important role as
they are used to supervise the model to generate the corre-
sponding characteristics of paint loss and background. How-
ever, for most cases, compared with the samples of background,
the number of paint loss samples is rather small. In addition,
accurate annotation on a pixel level is a highly challenging task,
which may lead to mislabelled samples. Errors can be caused

by blurring in low-resolution images, large transitions and low
contrast between target and background, noise, artefacts and so
on. To cope with this problem, we suggest a majority voting
strategy:

identity(x j) = argmax
c

pc
j (5)

where the fraction pc
j =Nc

j/K is an empirical probability for the
pixel j to belong to the class c. K is the number of simulations
and Nc

j the number of times that pixel j was assigned to class
c ∈ {Paint loss,Other}.

3 Results and discussion

We illustrate the detection result on a part of the panel prophet
Zachary, image patch 3 in Fig. 1 (b). The training samples are
from other two image patches in Fig. 1 (b), which were an-
notated by a painting conservator. Fig. 1 (f) shows one of the
annotated image patchs. We set the number of training sam-
ples in each class to 80 and K to 10. The imaging modalities
in Fig. 1 (a), (b) and (c) are used. Fig. 1 (h) and (j) illustrate
paint loss detection results of the proposed approach and virtual
inpainting using the detected mask and the inpainting method
from [12]. For comparison, we also show the paint loss map in
Fig. 1 (g) that is produced by applying the original SRC with
multimodal images and majority voting. The corresponding in-
painting result is reported in Fig. 1 (i). Obviously the proposed
method reduces significantly false detections. Consequently,
we avoid previous excessive oversmoothing and undesired re-
moval of cracks during virtual restoration.
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Macro- X-Ray Fluorescence scanning (MA-XRF) of a 

painting can provide meaningful information on the 

artist’s materials and process. Results are generally 

presented in the form of distribution maps for the key 

chemical elements that can be related directly to the 

pigments present in the paints based on their known 

chemical composition. The interpretation of such maps 

however may prove difficult or confusing if an elemental 

marker is common to several pigments and thus present 

in multiple paints. This study proposes extracting the 

paint distribution maps instead of the elemental maps 

using a multivariate image analysis approach. The 

Multivariate Curve Resolution - Alternating Least 

Squares (MCR-ALS) method can easily retrieve these 

maps from the hyperspectral data cube, especially when 

the signature spectra of the pure paints can be inputted in 

the model. In the case of Pollock’s Number 1A, 1948 

(1948) areas of pure paint were easily identified in the 

painting and the average spectra over those areas were 

used as initial estimates for the twelve pure paints and 

canvas. The MCR-ALS processing method provided 

distribution maps for paints that could not be visualized 

individually or visualized at all using elemental maps, 

thus providing a much better understanding of Pollock’s 

process. 

1 Introduction 

In the late 1940s, Jackson Pollock stunned the art world with 

his unique and radical style of abstract painting which 

consisted of flinging and dripping enamel paint onto a canvas 

laid on the floor of his studio. Critics and other personalities 

were quick to dismiss his paintings as “chaotic” to which he 

famously replied by telegraphing the Time magazine: “NO 

CHAOS, DAMN IT!” There is indeed a startling level of 

intentionality and deliberation in Pollock’s painting technique 

as demystified and immortalized by the photographer Hans 

Namuth images and footage of Pollock at work in 1950. Can 

chemical imaging techniques such as Macro-X-Ray 

Fluorescence scanning (MA-XRF) further deepen our 

understanding of Pollock’s process and help deconstruct his 

“action painting”? 

A previous study [1] reported on the successful use of MA-

XRF combined with Multivariate Curve Resolution solved by 

Alternating Least Squares optimization (MCR-ALS, a 

bilinear factor decomposition method to recover the 

concentration and the pure response profiles for species in 

unresolved mixtures [2]) to identify, characterize and map the 

paints used by Pollock in four small sections of Number 1A, 

1948. This approach is now being revisited and applied to the 

MA-XRF data for the entire painting in order to get a better 

understanding of the artist process. 

2 Methodology 

Number 1A, 1948 (J. Pollock, 1948, oil and enamel paint on 

canvas, MoMA access.# 77.1950, 173x264cm) was scanned 

with a Bruker M6-JETSTREAM (28 sections of 40x50cm, 

50keV, 0.6mA, 0.3mm step size, 0.4mm spot size resolution 

and 10ms/pixel dwell time). The SOLO+MIA 8.5.2 software 

(Eigenvector Research Inc.) was used to pre-process the MA-

XRF data (compression to the 1.8-11.4keV range and 100eV 

spectral resolution followed by Poisson scaling) and to carry 

out the MCR-ALS analysis (non-negative constraints for both 

concentration profiles and signature spectra and contrast 

enhancement for the concentration). MCR-ALS requires both 

the input of the number of pure components – in this case the 

number of paints, and an initial estimate of their response 

profile – the XRF signature spectra of the paints. A total of 

eleven paints had been identified during the exploratory study 

[1] and an additional black glossy paint was confirmed by 

visual examination. The study had also established that the 

paints had mostly been applied straight out of the tube or 

paint can and rarely mixed; therefore the signature spectra of 

the paints can be obtained by selecting areas of pure paint and 

extracting the corresponding average spectra from the MA-

XRF data. The elemental maps were obtained with the 

Bruker instrument software using the Bayes deconvolution 

method for comparison with the paint maps. Gimp was used 

to stitch the final overall maps.  

3 Results 

The formulation of the paints used by modern artists, whether 

they were manufactured for artistic or commercial use, is 

generally complex, containing multiple pigments, fillers and 

additives. Consequently, it is often difficult or even 

impossible, in the case of the MA-XRF scanning of modern 

paintings, to identify a specific element marker for every 

single paint, and thus it would be more advantageous to map 
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the paints instead, as done for example in multispectral 

imaging [3]. 

In the case of Number 1A, 1948 for example, Ba (in the form 

BaSO4 / barite – all pigments were confirmed by Raman 

and/or FTIR spectroscopy) is a major element in the white 

paint, together with Ti (TiO2 / titanium white) and Zn (ZnO / 

zinc white). Ti however is also a major element in the cream 

paint, together with Zn. Moreover, Ba and Ti contributions 

are usually difficult to separate due to the overlap of the 

characteristic Ba L-lines and Ti K-lines, even when using 

deconvolution methods that are either empirical, like the 

Bayes deconvolution provided by the instrument software, or 

using a fundamental parameters approach with for example 

PyMca [4]. Zn, on the other hand, is present in the yellow 

paint, together with Ba, Cd and S (CdS.(Zn).yBaSO4 / 

cadmium barium yellow), and in the red with Ba, Cd, Se and 

S (Cd(S/Se).yBaSO4 / cadmium barium red). It is therefore 

impossible to visualize separately the distribution of the 

white and the cream paints using elemental maps, or to 

visualize cadmium yellow without the cadmium red. It is also 

sometimes difficult to separate and visualize smaller 

elemental contributions. For example, Ba is also present in 

the turquoise paint together with a small contribution of Mn 

(BaMnO4.BaSO4 / manganese blue) but the concentration of 

this second element is much stronger in the black glossy paint 

(Fe, Co, Zn and Pb also present). The turquoise paint appears 

therefore in the Ba map, together with all the other paints 

containing Ba, and does not appear in the Mn map unless a 

very strong contrast is used to reveal its contribution and 

mixed with the much stronger contribution of the glossy 

black paint. It is thus impossible to visualize the turquoise 

paint separately from other paints. 

The advantage of using the MCR-ALS approach is clearly 

illustrated in figure 1 where the Ba, Ti, Mn and Cd elemental 

maps for a section of the painting are compared with the paint 

maps extracted with MCR-ALS for the cream, white, 

turquoise and yellow paints. In the paint maps, the cream and 

white paint are successfully separated tough both contain Ti. 

The yellow paint can be visualized separately from the red 

paint though both contain Cd, S and Ba, and a map for the 

turquoise paint was successfully extracted despite the fact 

that it is composed mainly of BaSO4. The only paint that 

could not be extracted is a glossy black paint that contains 

mostly carbon black which is not detected by XRF. It also 

contains small amounts of K, Fe and Ca, but these elements 

are also present in the canvas in similar concentrations and it 

thus impossible to map them separately.  In figure 2, the 

overall distribution map for the turquoise paint is compared 

with the image of the painting to demonstrate how revealing 

and fascinating the paint maps can be! Pollock’s process is 

clearly revealed, the direction of his gestures, how he must 

have squeezed the paint out of the tube to create the long 

lines and how the paint formed tadpole like shapes when it 

landed on the canvas at the beginning of the line. 

 

Figure 1: comparision of selected elemental and paint distribution maps 

for a section of the painting. 

Ti  Ba   Mn   Cd   

    
Cream paint 

(Ti, Zn) 

White paint 

(Ba, Ti, Zn) 

Turquoise paint 

(Ba, Mn, S) 

Yellow paint 

(Ba, Zn, Cd, S) 

    
 

 

Figure 2: Comparison of the overall distribution map of the turquoise 

paint with the image of the painting. 
 

 

Overall turquoise paint map extracted by MCR-ALS 

 

Number 1A, 1948 (1948) and highlighted section of the painting 

corresponding to the smaller maps above. 

4 Conclusions 

The overall paint maps reveal Pollock’s process like never 

before: the way he approached the canvas, the idiosyncrasy 

of each gesture and the rhythm that transpires in every paint 

layer. Positively “NO CHAOS, DAMN IT!”  
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Abstract—Producing damage surveys as part of condition re-
ports prior to and during restoration treatments is often a tedious
and time-consuming work for the art restorer. We explore the po-
tential of deep learning for automatic paint loss detection in paint-
ings to facilitate condition reporting and to support restoration
treatments. To the best of our knowledge, this is the first reported
attempt of employing deep learning in this application. We de-
velop a multiscale deep learning method, based on the recent U-
Net architecture which we extend with dilated convolutions, such
as to improve the detection stability. Our model is applicable to
multimodal acquisitions such as visible, infrared, x-ray, and ul-
traviolet fluorescence. As a case study we use multimodal data of
the Ghent Altarpiece. Our results indicate huge potential of the
proposed approach in terms of accuracy and also its exceptional
speed which allows interactivity and continuous learning.

1 Introduction

One of the documentation tasks during the conserva-
tion/restoration of paintings consists of mapping lacunas as
well as larger paint losses. Lacunas are mostly a result of dry-
ing and flaking of paint, although rough handling can also in-
troduce losses. Currently, the mapping involves a lot of manual
work since available software can only give a coarse estima-
tion of the paint loss. This makes the process rather slow and
tedious. In order to improve the automated mapping, smarter
image processing techniques are sought.

Paintings are nowadays typically scanned in different modal-
ities prior to restoration treatments and during their various
stages. Hence, our approach will be designed to make use of
the multimodal data. As the size of losses can range from a
few to hundreds of pixels, the algorithm should not only take
into account spectral information, but also have a large enough
spatial support.

Technical literature on paint loss detection is limited. Huang
et al [1] reported promising results with sparse representation
classification (SRC), surpassing common machine learning ap-
proaches like linear regression classification and support vec-
tor machines in this task. We propose an alternative method
based on deep learning, motivated by the huge success of con-
volutional neural networks in many other image classification
and segmentation problems. We will validate our method on
the panels of the Ghent Altarpiece [2], a monumental triptych
made by the brothers van Eyck in the 15th century. To the
best of our knowledge we are the first to report a deep learning
method for paint loss detection.

concatenate

concatenate

w

ww+1
w+5w+7w+15

w+17
Crop ((6+6), (6, 6))

w+21

w+22w+24
Crop ((11+11), (11, 11))

3x3 convpooling
2x2 conv

Figure 1: Proposed network architecture: a multiscale, multipath network with
dilated convolutions.

(a) Details from panel Prophet Zachary.

(b) Details from panel John the Evangelist.

Figure 2: Annotations made by the art restorer. Craquelure, formed by ageing,
is not considered paint loss and is treated differently from it.

2 Methods
The proposed neural network architecture is visualised in fig-
ure 1. Similar to the U-Net [3] it consists of an encoder (left),
a decoder (right) and skip-connect layers between the encoder
and decoder (top) [4]. The difference between the U-Net and
the proposed architecture is the removal of the decimation in
the pooling layers. This way we maintain the same resolu-
tion in all layers and enforce true translation invariance. While
this makes the bottom layers more dense than in the original
U-Net, the outputs become more averaged out and this im-
proves the stability of the output values. We observe that this
leads to an increase in accuracy and learning capability of the
model. The encoder consists of 3× 3 convolutional layers and
for the activation function the Rectified Linear Unit (ReLU,
σ(z) = max(0, z)) is used. Between these layers, pooling is
introduced by taking the maximum in a 2×2 window with over-
lap to maintain the resolution. To maintain the same receptive
field, the subsequent layers are replaced with dilated convolu-
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(a) Original image during treatment. (b) Detected paint loss. (c) Original image during treatment. (d) Detected paint loss.

Figure 3: Paint loss detection on parts of the grisaille panel: John the Evangelist. The following modalities are provided to the model: visible before restoration,
visible after varnish and over-paint removal, and infrared.

tions [5] and the amount of kernel weights remains identical
with respect to the original U-Net. The decoder mirrors the en-
coder and pooling layers are replaced with upsampling 2 × 2
convolutional layers with linear activation. The skip-connect
copies the layer of the encoder and concatenates it with the
output of the upsampling layer to combine information of lay-
ers working at different resolutions. This gives the network the
possibility to learn features on multiple scales simultaneously
along the different paths. The last layer is a per-pixel, fully
connected layer producing 2 feature maps: the probabilities of
a pixel being paint loss or not. These probabilities are a result
of the non-linear activation function Softmax:

σ(z)j =
ezj∑2
k=1 e

zk
. (1)

It converts each pixel values z to a normalised probability
vector ŷ = [p0, p1], p0 + p1 = 1).

To train the filters of the CNN, annotated data is requested.
In our case, these were provided by art restorers of the Ghent
Altarpiece. For each pixel, the annotation is converted to a vec-
tor yi = [1; 0] for not paint loss and yi = [0; 1] for paint loss.
The CNN is trained to minimise the cross entropy:

C = −y0 · log ŷ0 − y1 · log ŷ1 (2)

using Adaptive Moment Estimation [6]. The final prediction
map is obtained by thresholding the probability p1 of the out-
put. We obtained the highest Intersection over Union score by
thresholding at 0.5.

For the input of the network, the different modalities are first
registered, concatenated and then cropped to a fixed size. Since
each convolution and pooling operation reduces the output area,
the input patch of the network is larger than the output patch to
account for the receptive field. Because the input shape is a
fixed amount bigger than the output shape and all layers oper-
ate at the same resolution, there is freedom in selecting the size
of the patch to be segmented. Instead of classifying each pixel
individually by setting the output shape to 1 × 1, it is more
efficient to classify a big patch of pixels at once. When clas-
sifying nearby pixels, the overlap of the receptive field allows
the convolutional layers to share computations. This speeds up
the inference significantly and this means for the end user a big
difference for practical usage.

3 Results and discussion

Figure 3 visualises the detection results on a larger part of the
panel John the Evangelist. The 6 regions of the Ghent Al-
tarpiece annotated by the art restorer, illustrated in figure 2,
are from the panels Prophet Zachary and John the Evangelist.
In total there are 807, 740 annotated pixels available of which
8.3% is paint loss. This amount is increased by a factor 8 after
data augmentation by rotations of 90◦ and flips. These anno-
tated regions are divided into smaller patches after which the
network is trained on 80% of these patches. The remainder is
used for picking the optimal hyperparameters and testing the
accuracy. The following modalities were given to the model:
optical images before and during treatment, infrared, infrared
reflectography, X-ray, and ultraviolet fluorescence.

By segmenting patches of 10 × 10 or 100 × 100 instead of
per pixel, we observe a speed increase of a factor 40 and 300 re-
spectively for the inference. The results in figure 3 illustrate the
binary prediction of a relatively large image (size 5954×7545),
processed in less than a minute on a GeForce GTX 1070. Our
experiments indicate a stable performance even with relatively
few annotations. While our technique achieves similar results
as the SRC-based method of [1], it is orders of magnitude faster.
The art restorers appreciate the achieved results and the speed
shows a huge potential for practical use of the proposed ap-
proach.
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Abstract— In this work we present a dual-mode mid-infrared
workflow [6], for detecting sub-superficial mural damages in fres-
coes artworks. Due to the large nature of frescoes, multiple ther-
mal images are recorded. Thus, the experimental setup may in-
troduce measurements errors, seen as inter-frame changes in the
image contrast, after mosaicking. An approach to lowering errors
is to post-process the mosaic [10] via osmosis partial differential
equation (PDE) [12, 13], which preserves details, mass and balance
the lights: efficient numerical study for osmosis on large images is
proposed [2, 11], based on operator splitting [8]. Our range of Cul-
tural Heritage applications include the detection of sub-superficial
voids in Monocromo (L. Da Vinci, Castello Sforzesco, Milan) [5],
the light-balance for multi-spectral imaging and the data integra-
tion on the Archimedes Palimpsest [10].

1 Introduction
Nowadays, image processing is an active research field in Cul-
tural Heritage (CH) conservation. In particular, multi-spectral
image analysis can reveal hidden features of artworks and
help specialists during the restoration, e.g. [1, 3, 7, 9]. These
non-destructive methods offer high-resolution images and large
datasets to be processed via efficient algorithms, eventually.

In this work, we describe a new multi-modal mid-infrared
(MWIR, 3–5 µm) imaging technique [6, 5] to detect sub-
superficial defects in fresco walls, by combining the emitted
and reflected information recorded by a thermal camera with
suitable lighting sources. Here, multiple images are acquired
and mosaicked together so as to form a large MWIR mosaic.
However, the experimental setup may introduce measurement
errors, seen in our applications as inter-frame changes in con-
trast (i.e. constant shadows). Thus, errors are lowered via a
recently introduced drift-diffusion equation [12, 13], called os-
mosis, already able to remove constant shadows in images. We
implemented osmosis efficiently for large images (up to 30
MP), with standard numerical splitting approaches [8, 2].

Applications. We discuss the dual-mode workflow for the
detection of sub-superficial voids and cement patches in the
restoration of Monocromo, a fresco wall by Leonardo Da Vinci
(Castello Sforzesco, Milan). Results are validated by specialist
restorers from Opificio delle Pietre Dure (Florence).

We applied the efficient osmosis model for different CH im-
ages acquired in different electromagnetic bands, where a light
balance post-processing enhances the information: MWIR
thermal quasi-reflectography, UV fluorescence and IR falsec-
olor imaging. We also discuss the use of osmosis for a multi-
spectral data-fusion on the Archimedes Palimpsest.

Organisation. In Section 2, we describe the core idea of the
multi-modal MWIR workflow for the detection of mural de-

fects. In Section 3, we recall the osmosis equation and the split-
ting approach for an efficient numerical solution of the light
balancing problem. In Section 4, we present other applications
of the osmosis model in different CH imaging problems.

2 Dual-mode mid-infrared imaging
In [4], a new MWIR methodology called Thermal Quasi-
Reflectography (TQR) is proposed for revealing more sub-
superficial mural features than traditional approaches. At the
core of TQR there is the observation that an object, at room
temperature, emits in the MWIR spectrum only 1% of its
thermal energy: thus, its (quasi-)reflected radiation ρ can be
recorded by a MWIR thermal camera and suitable light sources.

In [6], this idea is evolved into a dual-mode (reflected plus
emissivity) MWIR infrared approach. Here, TQR is the first
step of the workflow since it provides the emissivity ε = 1− ρ
via the simplified Kirchhoff’s law. Such ε is then plugged in the
recording of a thermal cooling down sequence in the emissivity
mode. Both steps are performed by the same thermal device in
a fixed geometry lighting setup, tuned safely for artworks.

Thus, the dual-mode complementary information can be su-
perimposed to unveil hidden mural features, e.g. different cool-
ing down profiles. Also, TQR details allow to register the two
aligned datasets onto a visible orthophoto, an impossible task
for the emissivity-only mode due to the heat diffusion blurring.

In Fig. 1 we report (top row) the visible fresco, the reflected
TQR, the emitted thermal images and the fusion of the com-
plementary data; we also show (bottom row) the discovering of
sub-superficial cement patches via the dual-modal approach.

Figure 1: Dual-mode MWIR imaging for discovering hidden cement patches.

In Fig. 2, sub-superficial voids are effectively detected: dif-
ferent void shapes at sub-millimetric precision are revealed and
measured with pins by restorers of Opificio delle Pietre Dure.

Figure 2: Defect measures (in mm.) of identified damages via dual-mode setup.



3 Efficient osmosis for light balancing
Let Ω ⊂ R2, u, f, v : Ω → R, d : Ω → R2 with d = ∇ log v.
The following model is called osmosis [12, 13]:

ut = div(∇u− du) on Ω× (0, T ];

u(0) = f(x) on Ω at t = 0;

〈∇u− du,n〉 = 0 on ∂Ω.

(1)

Interestingly, the non-symmetric drift-diffusion PDE (1) has
nice properties, e.g. conservation of the mass, positivity and
convergence to non-constant steady states, which makes its use
appealing for imaging applications, when d is locally modi-
fied. This is the case for removing constant shadows in images,
where d = 0 on the shadow edges, i.e. the jumps produced by
sharp shadows. Numerical solutions of (1) are given by solv-
ing the linear system ut = Au where the 5-diagonal spatial
discretisation A of div(∇u − du) is given by A = A1 + A2

with

A1(u) :=
ui+1,j − 2ui,j + ui−1,j

h2

−
(
d1,i+ 1

2
,j

ui+1,j + ui,j

2h
− d1,i− 1

2
,j

ui,j + ui−1,j

2h

)
A2(u) :=

ui,j+1 − 2ui,j + ui,j−1

h2

−
(
d2,i,j+ 1

2

ui,j+1 + ui,j

2h
− d2,i,j− 1

2

ui,j + ui,j−1

2h

)
.

From [12, Prop. 2], A is irreducible, with non-negative off-
diagonal entries and column sums equal to 0: thus, scale-space
properties are guaranteed for Implicit and Explicit (with time-
step restriction) Euler [12, Prop. 1].

For large images, a way to avoid the computational bottle-
neck due to the large bandwidth of A is to consider A1 and
A2 separately, by ADI splitting [8]. Among the others, the
Multiplicative Operator Splitting (MOS) scheme preserves the
scale-space properties of (1) and provides effective results for
large time-steps τ > 0 [11]:

uk+1 =

2∏
n=1

(I− τAn)
−1
uk, (MOS)

In Fig. 3 we applied the osmosis filter to a TQR mosaic ob-
tained from the workflow described in Section 2. Thus, we
aimed to balance the inter-frame contrasts while preserving
intra-frame details: this helped restorers in the visual inspec-
tion and comparison of hidden features of the mural painting.

Figure 3: Monocromo, L. Da Vinci. Visible (left), TQR mosaicked (middle),
osmosis result (right, 28 MP processed in 629 s. via MOS splitting)

4 Other CH applications
In CH imaging there exists other situations in which multiple
images are sampled under different light conditions, which may

introduce errors and affect the quality of the final image to in-
spect. Again, the use of an efficient numerical scheme of the
osmosis model (1) makes the task of homogenizing the light
differences possible in a reasonable time. In Figs. 4 and 5 we
report a case study for the UV fluorescence inspection and the
falsecolor imaging (IR-Red-Green) of a Russian icon.

Figure 4: Light balancing in UV Fluorescence. Visible (left), 5 UV Fluores-
cence tiles, result (right, 18 MP and 3 color channels, 1693 s. [10])

Figure 5: Light balancing in IR falsecolor imaging. IR before and after osmosis
(left and middle-left), IR-R-G before and after osmosis (middle-right and right,
detail of 18 MP, 721 s. [10])

In Fig. 6 we report a detail of the Archimedes Palimpsest,
a X century copy of the works by Archimedes overwritten in
XIII century. Here we used the property of (1) to converge to a
rescaled version of v, encoded in d, to fuse the original written
text with the current colours.

Figure 6: Data integration: Archimedes Palimpsest (detail, 2 MP, 137 s. [10]).
Visible parchment (left), hidden text (center), data fusion (right).

5 Conclusion

In this work, we highlighted the dual-mode MWIR analysis for
the restorations of frescoes [6]. Also, we tested an efficient
numerical approach of the osmosis equation [12, 13] for a vari-
ety of CH multi-spectral applications, from balancing lights in
multi-spectral images to data fusion on Archimedes Palimpsest
[10].

Data statement. The Monocromo data are sensitive: access
subjected to Soprintendenza Castello Sforzesco, Milan. The
Archimedes Palimpsest1 is released under CC-BY 3.0 license.

1http://openn.library.upenn.edu/Data/0014/ArchimedesPalimpsest
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Fig. 1: Panels from the Ghent Altarpiece: (left) open panel,
(centre) closed panel, (right) corresponding X-ray images
containing a mixture of components.

Historical paintings – very valuable objects of our cultural
heritage – have motivated intensive scientific research in
order to gain a more profound insight about their creation
and restoration history as well as optimize conservation and
preservation processes. Currently, scientific research in art
investigation is often aided by various non-invasive imaging
processes, such as infrared imaging, X-ray imaging, hyper-
spectral imaging, and more, to aid the analysis of brushstrokes,
canvas thread counting, digital in-painting of cracks, to name a
few [1]. In particular, X-ray scans are able to penetrate through
the painting, revealing information about the inner structures
of the painting including underpaintings and underdrawings,
composition of the materials and cracks in the different layers.
[1].

In this work, we concentrate on X-ray unmixing problems
arising in art investigation applications. In particular, in view
of the fact that the X-ray scan of a double-sided painting con-
sists of the super-position of individual X-rays corresponding
to each side of the painting, we propose a new multi-modal
image separation algorithm to unmix the mixed X-ray onto
its constituents by leveraging the availability of other image
modalities as side information – such as visual scans –to aid
the separation task in hand.

A well-known piece of artwork containing double-sided
painted panels is the Ghent Altarpiece1 shown in Fig. 1. In
particular, Fig. 1 depicts the X-ray images from a double sided

1http://closertovaneyck.kikirpa.be

Fig. 2: X-ray images cropped from double-sided panels of the
altarpiece.The resolution is 1024× 1024 pixels.

panel of the Ghent altarpiece exhibiting features associated
with the painting in the front and rear panels.

Our approach is based on the use of a joint Gaussian
mixture model (GMM) to relate an X-ray scan to a visual
scan of a painting. This modelling approach – which has been
motivated by the fact that the use of GMMs can provide state-
of-the-art results in various image processing applications [2]–
exhibits various advantages: 1) First, the training process can
be done very efficiently using effective algorithms such as
expectation maximization, 2) Second, the image separation
process can also be done very efficiently using simple closed
form expressions, and 3) finally, this method exhibits various
performance gains in relation to other state-of-the-art image
separation approaches [2].

Finally, we use our algorithm to separate the X-ray images
obtained from double-sided panels in the well-known Ghent
Altarpiece dataset shown in Fig. 2.

Here, the parameters of the joint GMM – the mean and
the covariance matrix of the Gaussian components – are
learned from X-ray image patches and their corresponding
visual scans taken from single-sided panels of the Ghent
Altarpiece, via the Expectation Maximization (EM) algorithm.
The learned parameters are then used to separate the mixture
of X-rays from double sided panels using a simple closed-form
expression.

The results of our algorithm are depicted in Fig. 3 and
Fig. 4. We compare our algorithm against other state-of-
the-art algorithms in separating X-ray images, coupled dic-
tionary learning [1] and morphological component analysis
(MCA) [3]. We use the same training data from single sided
panels to learn the coupled dictionaries. We follow the setting
in the original work on the same dataset [1] and report the
best performing multi-scale approach. It is worth mentioning
that, as opposed to the the results reported in [1], we do not
remove the crack patterns from the painting images. For MCA
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Fig. 3: Visual evaluation of the proposed algorithm in comparison with other algorithms [1], [3] in the separation of X-ray
images; first row separated side 1; second row separated side 2; first column, the results of the proposed algorithm; second
column, the results of the multi-modal dictionary learning algorithm; third column, the results of the MCA algorithm with
fixed dictionaries; fourth column the grey scale image of each side.

Fig. 4: Visual evaluation of the proposed algorithm in comparison with other algorithms [1], [3] in the separation of X-ray
images; first row separated side 1; second row separated side 2; first column, the results of the proposed algorithm; second
column, the results of the multi-modal dictionary learning algorithm; third column, the results of the MCA algorithm with
fixed dictionaries; fourth column the grey scale image of each side.

algorithms we use fixed curvelet and wavelet dictionaries.

Due to lack of ground truth for this dataset, a quantitative
evaluation of the performance of the algorithms is not available
and the comparison will be based on the visual evaluation
of the results. It is crucial to note that, training the GMM
model can be done very efficiently using the effective EM
algorithm and the source separation can be done very effec-
tively using simple closed form expression; on the contrary
the coupled dictionary based algorithm which uses a modified
OMP algorithm for dictionary learning and reconstruction
tends to incurred in an increased computationally complexity
when the dimensions of the dictionary grow. Our results show
our GMM based algorithm is more effective than coupled

dictionary learning based algorithms [1] in the separation of
X-ray images.
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Abstract 

This paper presents the application to treatment and 

conservation of a set of albumen photographic print-out that 

exist within King Farouk collections and kept in Royal of 

Vehicles Museum, dating from 19th century. Museum contains 

five albums of photographs, and these photos preserved in a 

good way somewhat distant from the sources of moisture, 

which helped to save them in good condition. Archaeological 

and photographic documentation was carried out. The optical 

microscope was tested for damage to the surface of the album 

and photographs. The scanning electron microscope (SEM-

EDX) was used to examine the surface of the photograph, using 

an elemental analysis unit to determine the constituents of the 

black and white photograph. The infrared spectrum analysis 

(FTIR-ATR) was done to identify the chemical composition of 

the medium used for depositing light-sensitive silver salts. The 

test was carried out using UV photography to ensure that there 

were no watermarks on the paper used as a secondary support 

for the photographs. 

 

1. Introduction 

Historical Vehicles Museum is a one of the rarest historical 

museums in the world. The museum dates back to the reign of 

Khedive Ismail Pasha, who ruled Egypt (1879 - 1863). It was 

the first thought of in the construction of a special building 

Khedive vehicles and horses. This phase ended when the royal 

family was leaving the rule that the building was rehabilitated 

to be a historical museum for vehicles, as it contains vehicles 

and chariots of King Farouk I. All vehicles documenting by 

photographs to put it in the fifth albums which sealed the royal 

stamp. This paper presents the practical study, include the 

treatment and conservation of a set of albumin photographic 

print-out, these photos preserved in a good way somewhat 

distant from the sources of moisture, which helped to save them 

in good condition. It was selected as one of this royalty albums 

and make a plan for preservation. 

 

2. Documentation and Visual Investigation 

Visual inspection of the album turned out to be in stable condition and good with some dirt in the sides and edges are shown in the 

following figures: 

     

Fig1: Interface of Ismail 

Pasha album 

Fig2: Royal Logo Fig3: Flake and damage of 

the edges 

Fig4: Dirty in the 

edges of the paper 

Fig5: Digitalizing of 

the albumin photos 

     

Fig6: First page of the 

Royal album 

Fig7: Royal Stamp 

 

 

Fig8: second page which stat 

the photos for service 

Fig9: The opposite 

page of the first one, and 

we can see the effect of 

ink 

Fig10: Separation in 

the connector section 

 38



     

Fig11: Type of photo that 

takes in one shot 

Fig12: Completing in the 

area the bond between the two 

images 

Fig13: Type of photos that 

takes in two shots merge 

they in one photo 

Fig14: Another 

type of photo 

Fig15: Portiere 

for head of serves 

 

 

3. Digital Microscope 

The album checked by using digital microscope connected by computer (USB Digital Microscope) strongly enlarge 300 ×. 

  

 

  

 

  

Fig17: First photo, surface of paper, 

surface of photo, we were note the shape 

of albumin. 

 Fig18: Spot of steel the result of the 

use of iron ink. 

 Fig19: Peeling and color change on the 

surface of the album as a result of 

exposure to light. 

  

 

  

 

  

Fig20: Spot of silver halides due to 

manufacturing. 

 Fig21: Ink in Second page.  Fig22: Textile structure of the joint 

between the user pages. 

4. Examination and Analysis Methods of Albumin 

4. 1. SEM-EDX 4.2. FTIR-ATR 

    

Fig23: SEM (strongly 

enlarge 200 ×) of an 

albumin sample of 

photographs.  

Fig24: Pattern analysis of (SEM-

EDX) of a sample of the emulsion 

albumin Photo. 

Fig25: The spectrum of Albumin on 

photographs measured by ATR 

technique. 

Table1: FTIR-ATR 

characteristic ab-

sorptions bands of 

white egg. 

 

5. Conclusion 

Digitalizing of photographic prints by copying and duplicating 

is one of the principal way to conserving photographic prints. 

Storage of albumin photographic prints in a museum or place 

closed to the river makes it susceptible to insecticide as a result 

of high humidity and salt levels in the surrounding storage area.  

The Albumin thin films on photographic materials were 

investigated by optical microscope, SEM-EDX, and FTIR-ATR 

spectroscopy. Egypt was among the first countries that used 

photography to document the vehicles which used in all special 

services for khedive and keep it in royal album. 
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Abstract— The accurate detection of cracks in paintings, which
generally portray rich and varying content, is a challenging task.
Furthermore, traditional crack detection methods are often not
well suited for recent acquisitions of paintings as they are not
designed for high-resolution images and do not fully exploit the
information from the different imaging modalities at hand. In
this work, we propose a fast crack detection framework that al-
leviates the aforementioned challenges. The method consists of a
morphological filtering operation followed by a classification step
by means of a convolutional neural network architecture. The
proposed online method is capable of continuously learning from
newly acquired visual data, thus further improving classification
results as more data becomes available.

1 Introduction

Paint cracking (or craquelure) is the most common type of
deterioration encountered in old master paintings. Generally
speaking, cracks appear in paint layers when pressure devel-
ops within or on it through the influence of various factors and
cause the material to break [1]. The automatic detection of
crack patterns is desirable for many reason. Most importantly,
crack patterns can offer insights on the structural condition and
conservation history of a painting [1]. Crack detection is also
used as a preprocessing step for the digital restoration of paint-
ings [2].

Many crack detection methods have been developed over the
recent years, see e.g. [2–6] and the reference therein. Still,
some important challenges remain especially in terms of fea-
ture selection, which often has to be adapted for different paint-
ings, parameter tuning, and complexity, which limit practical
applicability.

In this paper, we propose a new deep learning based ap-
proach for crack detection in paintings. The method consists
of two processing stages: (i) a morphological filtering stage,
and (ii) a classification stage. The morphological filtering es-
sentially ensures that the amount of pixels to be classified by
the CNN in the second stage is strongly reduced as only those
pixels that are similar in structure to cracks are selected. In the
classification stage, we employ a convolutional neural network
(CNN). CNNs demonstrated recent success in many applica-
tion where they have outperformed, often by a substantial mar-
gin, traditional machine learning algorithms [7–10]. We are not
aware of any reported works that apply CNNs to crack detec-
tion in paintings. Some recent works applied CNN to detect
cracks in roads [11, 12]. Our problem is, however, much more
challenging not only because of the huge variability of cracks in
paintings but also due to complex background and the fact that
some painted details can closely resemble cracks. Therefore,

our approach needs to incorporate multimodal data, which to-
gether with huge spatial resolution of digitized paintings poses
additional challenges for the classifier.

2 Proposed approach
The first step in the proposed method is morphological filtering
of the available modalities. This operation creates a preliminary
crack map in a similar way as in [4, 5]. Each filtered result is
followed by a thresholding step, producing binary images. The
threshold is set based on the method of Otsu [13]. The binary
maps are then combined into a single one using the logical OR
operation. The morphological filtering step improves greatly
the classification speed. The classifier is run only on pixels
marked as crack in this first stage.

The input of our classification network consists of tensors of
size m ×m × N . These tensors are formed by concatenating
m×m sized patches extracted from the N considered modali-
ties (the three color channels of the visual macro-photographs,
the single-channel infrared macro-photographs and X-ray im-
ages, along with their grayscale morphologically filtered results
add up to N = 9 modalities.1). An input sample is represented
by the tensor x(u1, u2, υ0) ∈ Rm×m×N , where u1, u2 are spa-
tial coordinates and υ0 is the index that identifies the chosen
modality. For our experiments, we fix m = 8, resulting in ten-
sors with dimensions of 8 × 8 × 9. The convolutions over υ0
are calculated in the first layer of the CNN as follows:

x1(u1, u2, υ1) = ρ
(
x(u1, u2, υ0) ∗ wυ1(u1, u2, υ0)

)
, (1)

where x1(u1, u2, υ1) is the feature map obtained by the convo-
lution of x(u1, u2, υ0) with wυ1(u1, u2, υ0), indexed by υ1 (in
our architecture 1 ≤ υ1 ≤ 12 for the first, 1 ≤ υ2 ≤ 24 for
second and 1 ≤ υ2 ≤ 48 for the third convolution layers), and
where ρ is an activation function. We choose the well-known
rectified linear unit (ReLU) [7], defined as ρ = max(0, x). All
kernels are initialised randomly in the beginning of the train-
ing procedure. The core of our CNN architecture consists of
performing a cascade of convolutions at each layer j ≥ 2 as
follows:

xj(u1, u2, υj) = ρ
(
xj−1(·, υj−1) ∗ wυj (·)

)
, (2)

where, as we navigate through the subsequent layers, the reso-
lution of xj(u1, u2, υj) progressively reduces [14,15]. The last
layer of the architecture consist of a softmax function, which
ensures that all class probabilities sum up to 1.

1A disk-shaped structuring element with a diameter of 5 pixels was used for
all experiments.
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Figure 1: Left: A fragment of the panel Virgin Annunciate. Right: Results
of the proposed method in comparison with BCTF. Blue: cracks identified by
both methods; red: cracks detected by BCTF only; green: cracks detected by
the proposed method only.

3 Experimental Results

All experiments are performed on a high-resolution multi-
modal dataset of the Ghent Altarpiece, publicly available on the
Closer to Van Eyck website2. In particular, we focus on three
panels of the polyptych, named Virgin Annunciate, Singing An-
gels and John Evangelist. For comparsion we use the Bayesian
Conditional Tensor Factorisation (BCTF) method from [3],
which was also evaluated and compared to other methods in [6].

Figure 1(Left) shows crack detection results on a part of the
panel Virgin Annunciate which is particularly challenging be-
cause some painted features resemble cracks. The results dis-
played in Fig. 1(Right) show that BCTF falsely labels a signif-
icant amount of pixels (such as the decorative elements around
the big letter “P”), while our method successfully differentiates
true cracks from those painted features. It should be noted that
both methods use the same image modalities.

Similar conclusions follow from the results on the panel
Singing Angels displayed in Fig. 2(Top). In general, the pro-
posed method detects more cracks while reducing false detec-
tions. Furthermore, the proposed method can be trained in an
online fashion, i.e. without re-training the whole network, con-
tinuously improving detection results (Fig. 2(Bottom)). An im-
portant asset is also rapid processing, especially once the net-
work is trained. This makes our framework integrable in a fast
and interactive tool that can be used by art professionals.

Figure 3 depicts results on a small area from the panel of
John the Evangelist. For this example, only one modality
was considered, namely the color photograph, for both meth-
ods. The BCTF method was trained specifically for this image,
while the proposed method was pre-trained on other panels and
only a small fraction of labels (approximately 3,000 patches of
two types) from the present panel were used to re-train the net-
work. This experiment indicates that the proposed method can
be deployed for a variety of paintings, with relative little effort.

In general, the proposed method demonstrates potential to
improve upon the current state-of-the-art methods by detecting
more cracks while also reducing false detections. Furthermore,
the proposed method can be trained in an online fashion, i.e.
without re-training the whole network, continuously improving
detection results. An important asset is also rapid processing,
especially once the network is trained. This makes our frame-
work integrable in a fast and interactive tool that can be used
by art professionals.

2Link: http://closertovaneyck.kikirpa.be/

Figure 2: Top: A fragment of the panel Singing Angels. Bottom: Results
of the proposed method in comparison with BCTF. Blue: cracks identified by
both methods; red: cracks detected by BCTF only; green: cracks detected by
the proposed method only.

4 Conclusion

In this paper, we propose a novel crack detection framework
capable of handling acquisitions from different modalities. In
a first step, we apply morphological filtering for a coarse initial
identification of crack pixels. This step substantially reduces
the amount of data to be processed later on. We then train a
CNN architecture with user labelled data to further refine the
results obtained in the first step. We show that our method im-
proves upon the current state-of-the-art in this application. An
additional advantage is the possibility of re-training the net-
work using newly available data. This feature allows to im-
prove the already obtained result without significant time costs.

Figure 3: Left: A fragment of the panel John Evangelist. Right: Results of the
proposed method (pre-trained on other panels and re-trained with few labels
from the present panel) in comparison with BCTF (trained for this particular
image). Blue: cracks identified by both methods, red: cracks detected by BCTF
only, and green: cracks detected by the proposed method only.
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Abstract— Baselines are the starting point of any quantitative
multimedia research, and benchmarks are essential for pushing
those baselines further. In this paper, we present baselines for the
artistic domain with a new benchmark dataset featuring over 2
million images with rich structured metadata dubbed OmniArt.
It contains annotations for dozens of attribute types and features
semantic context information through concepts, IconClass labels,
color information, and (limited) object level bounding boxes. We
establish and present baseline scores on multiple tasks like artist
attribution, creation period estimation, type, style, and school pre-
diction. To accomplish this we develop multi-task deep learning
pipelines that are able to train and evaluate on multiple attributes
at the same time. As an example of additional types of analyses,
we explore the color spaces of art through different types and eval-
uate a transfer learning object recognition pipeline.

1 Introduction

OmniArt features 1,348,017 indexed images with full anno-
tations and 702,000 more unlabeled images with incomplete
metadata which extends upon our preliminary 500K dataset
presented in [3]. These data samples are described by four
independent metadata types. Figure 1 illustrates the separate
metadata types and their instantiations. The persistent and col-
lection specific annotations are obtained from the collection of
origin, while the object and meta level annotations are inserted
with the help of intelligent models or manual annotation. Addi-
tionally, a modular metadata structure improves redistribution
efficiency by minimizing the data volume overhead. For exam-
ple, different tasks such as object recognition or creation pe-
riod estimation, might require a different annotation strategy,
so having distributed information can increase efficiency and
reduce data processing complexity. A good example where a
different annotation strategy is required, is in images annotated
with the IconClass taxonomy. IconClass [1] annotations offer
a hierarchical semantic description of the visual content of the
artwork. They are constructed of an IconClass code and a suit-
able description. In the OmniArt dataset we have assembled
a collection of more than 450.000 photographic reproductions
of artworks annotated both with the persistent metadata and
IconClasses. As one artwork can have multiple IconClasses
(see Figure 1), having it in the same structure as the persistent
metadata would increase query durations, which is a problem
a modular structure addresses. This modularity of information,
even at this scale fits nicely with current software engineering
paradigms, thus querying and application development are sim-
plified.

Being able to query and explore a dataset efficiently is cru-
cial, not only for developing software solutions, but for under-
standing it as well. Especially with a semi-automatically gener-
ated dataset of these proportions containing metadata from var-
ious sources, an efficient tool for exploration and control is im-
portant both for quality assurance and easy access. For that pur-

Objects

Ship

Flag

Barrel

Raft

Fire

Concepts

War

Naval

Sea

Battle

Palette

Object and Meta Level Annotations

Persistent and Collection Specific Annotations (12 of 20 shown)

OmniID: 421381

Name: Ango-Dutch Warships

Artist: Peter Bull

Date: December 20, 2011

General Type: Painting

School: British

Century: 21

Region: Netherlands, Britain 

Sub type: Book Illustration

Collection: WGA 2017

Genre: Maritime War Art 

Style: Figurative Art  

Materials: Canvas, Oil

Figure 1: Sampled image from the OmniArt dataset with bounding boxes for
object level annotations, key content concepts, the extracted color palette and
textual metadata

pose, an integrated exploration and annotation tool on an image
and object level comes with the OmniArt dataset. Imagewise,
the exploration tool provides insight into attention and saliency
maps based on the task of interest [4], while the annotation tool
allows for editing the persistent and meta level metadata. On
the object level, with the annotation tool a user has the ability
to draw, store and alter inner image bounding boxes. Each of
the bounding boxes represents an area where the labeled object
is present. One image can have multiple objects and multiple
annotations from multiple users at the same time. We also take
into account color information and enable exploration by col-
ors. The exploration tool designed for OmniArt provides a way
to navigate, browse and modify the different annotation types
in a seamless process.

2 Benchmark Tasks

2.1 Experimental setup
For the purpose of the experiments and establishing the men-
tioned baseline scores we deploy a VGG-like architecture [2]
pretrained on ImageNet and then fine-tuned for the task at hand.
On top of the feature extracting neural network we deploy a
multilayer perceptron for classification/prediction purposes. It
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Classification Accuracy (%)

Contemporary Art - c. 1946 - now

Modern Art - c. 1860 - 1945

Post Renaissance Art - c. 1600 - 1833

Renaissaince Art - c. 1300 - 1602
1. Proto Renaissance

2. Early Renaissance

3. High Renaissance

4. Mannerism

5. Northern Renaissance

6. True Renaissance

1. Baroque
2. Rococo
3. Tenebrism
4. Classicism
5. NeoClassicism
6. Orientalism
7. Luminism

8.  Academicism

9.  Romanticism

10. Orientralism

11. Biedermeier

12. Costumbrismo

13. Realism

1. Naturalism
2. Primitivism
3. Symbolism
4. Impressionism
5. Pointillism
6. Divisionism
7. Post-Impressionism
8. Fauvism
9. Art Nouveau
10. Expressionism

11. Neo-Romanticism
12. Cubism
13. Abstract Art
14. Futurism
15. Dadaism
16. Constructivism
17. Concretism
18. New Realism
19. Social Realism
20. Surrealism

21. Magic Realism
22. Fantastic Realism
23. Art Deco
24. Purism
25. Precisionism
26. Socialist Realism
27. Lyrical Abstraction
28. Color Field Painting
29. Hard Edge Painting
30. Abstract Expressionism

31. Tachisme
32. Feminist Art
33. Art Brut
34. Neo-Expression.
35. Neo-Dadaism
36. Kinetic Art
37. Pop Art
38. Nouv. Realisme
39. Kitsch

1. Conceptual Art                                            
2. Minimalism
3. Post-Minimalism
4. Light and Space
5. Photorealism
6. Hyper-Realism
7. Contemporary Realism
8. Transavantgarde
9. New European Painting
10. Environmental Art

11. Neo-Pop Art
12. Street Art
13. Symbiotic ARt
14. Neo-Minimalism
15. Pattern and Decoration
16. Neo-Geo
17. Lowbrow Art
18. Maximalism
19. New Casualism
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Figure 2: Style classification performance comparison between classical artistic movements and more recent ones. This evaluation shows that modern artistic
styles are visually less distinguishable than classic ones.
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Figure 3: Artist attribution performance relative to the number of classes and
number of samples in the used dataset.

consists of two fully connected layers with 1536 ReLu units
each and a dropout factor of 0.2. During training we also fine-
tune the final convolutional block of the network to obtain fea-
tures better adjusted to the art domain. The optimization is
guided by the Adam optimizer with a dynamic learning rate
starting at 0.001 which decreases during the epochs. With a
batch size of 96 and a square input size of 224px (random crop)
in RGB we perform training for 30 epochs for each of the tasks.

2.2 Artist Attribution
In artist attribution we attempt to determine the artwork’s cre-
ator based on the visual information contained in the image.
For the purposes of this experiment we devised several cue
points in terms of the class restrictions specific for the task.
The baseline experiments were performed on selected subsets
of data, as well as the whole dataset. Each subset has been
limited by the minimum number of examples per class, namely
20, 100, 250, 500, 1100 and 2000. Classification performance
is displayed in Figure 3.

2.3 Creation Period Estimation
Since this task can be considered both as a prediction or clas-
sification, we report scores in both settings. For the prediction
task we report scores on creation year estimation, while we con-
sider the creation century estimation both a classification and
prediction task. Creation years are estimated with the mean
absolute error as the function for which we optimize. In a cat-

egorical setting of the creation century estimation we softmax
84 classes, while in the prediction setting we continue to use
mean absolute error. Classification performance in all 2 mil-
lion images is at 18.3%accuracy, and in artworks dating after
the 1500s rises to 42.8% accuracy.

2.4 Style Classification

One of the most notorious attributes when it comes to catego-
rization is what makes an artwork beautiful - style itself. An
artistic style is a collective title given to artworks which share
the same artistic ideals, technical approach, context or timeline.
Experimental results in Figure 2 show that our simple model is
better suited in distinguishing artistic styles from the previous
centuries then more recent ones. We further continue the anal-
ysis to conclude that artworks containing larger distinguishable
shapes and colors in the Contemporary and Modern Art quad-
rants (Minimalism, Post-Minimalism, Light and Space, Sym-
bolism) are easier for the model to distinguish from other recent
styles.

2.5 Type Prediction

For the artwork type prediction task we performed predictions
on both the general type and the subtype of the artworks. Since
the general artwork type is a superset of the subtype it can be
also considered a hierarchical classification task. There is a
total of thirteen general type categories and 2449 subtypes to be
taken into account, excluding the artworks for which a general
type has yet to be determined. Overall classification accuracy
of the type classification task is 39.9% accuracy and paintings
are the visually most distinguishable type with 75.4% accuracy.

2.6 School Prediction

In the OmniArt dataset there are more than 200 registered
schools on a national basis from the A.D. period. For the art-
works created in the B.C. period the school attribute is un-
known. The overall predictive performance of the models is
19.7% while the Italian school of painting is most distinguish-
able with 62.1% accuracy.
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Abstract— Cracks have been observed in historical silver ob-
jects. The formation of these cracks is most likely the result of
the alloy compositions as well as the deformation of the material.
To this day, there is no standard or trusted way to identify cracks
in silver and determine whether they progress over time. In this
work, a number of image processing techniques, originally devel-
oped for the detection of cracks in paint surfaces, were explored
and evaluated. Initial promising results show that cracks in silver
can be detected using image processing techniques, opening up the
possibility of monitoring their progress over time.

1 Introduction
The 17th century was not only a Golden Age for Dutch paint-
ing, other areas of Dutch art such as gold- and silversmithing
equally flourished. Silversmiths from the Low Countries were
internationally renowned for their wrought silverwares, which
show extraordinary skill in raising, embossing and chasing.
Silver and gold objects by artists like Paulus van Vianen
(1570-1613) and Johannes Lutma (1584-1669) demonstrate a
masterly skill in the extreme manipulation of silver, unique to
the Low Countries and sometimes referred to as Dutch raising.
It is often assumed that silver, other than being highly sensi-
tive to sulphur compounds, is a stable material. On several ac-
counts however, the formation of (micro-)cracks was observed
on silver objects (see Figure 1). Examples displaying this prob-
lem are the Matthias Melin (1589-1653) and van Paulus van
Vianen (1570-1613) plaques in the Rijksmuseum collection.

Figure 1: Detail of the back of a silver plaque displaying cracks, anonymous,
1595, Rijksmuseum collection, inv.nr. BK-1982-4-A, magnification 20×.

2 The formation of cracks
It would seem logical to attribute the cracking to the extreme
deformation of the silver, however cracks were also observed
on areas that have been chased in low relief. This is most likely
due to the fact that historical silver alloys contain low amounts
of lead (> 0,8%) as trace elements from the ore, but also from
the cupellation of the silver. The lead can precipitate in the ma-
trix and on the grain boundaries, often causing embrittlement.
It is unknown if these cracks in historical silver are stable or if
they are progressing over time and will start to embrittle in a
couple of centuries or even decades in ambient environments,
as is seen in archaeological silver.

The following research questions were formulated, with the
third question being the most relevant:

1. What causes the cracking phenomena and/or embrittle-
ment in historical artefacts?

(a) What is the influence of trace elements?

(b) What is the correlation between the presence of trace
elements and the amount of cracks observed?

(c) What is the influence of the manufacturing tech-
niques used?

2. Did cracking form during manufacturing or at a later
stage?

3. Are these crack patterns progressing?

Most research into silver embrittlement has been done on
ancient archaeological artefact. This has shown that the burial
time, the temperature, moisture content, pH and chemical com-
position of the burial environment, especially the salt, nitrate
and nitrite content, can have a huge impact on the deterioration
process and can accelerate the corrosion hereof [1]. To gain
a deeper insight into this phenomenon on historical silver it is
essential to closely study surviving objects from this period as
well as mock-ups of historical silver alloys. For reconstruction
purposes we are fortunate to have a unique and very informa-
tive Dutch manual surviving from the early 18th century; Van
Laer’s Weg-Wyzer voor Aankoomende Goud en Zilversmeeden
(1721). Van Laer describes in detail, for example, the use of
certain chemicals and the heat source being used during man-
ufacturing or the alloy composition. These descriptions could
provide us with essential information on why the cracking oc-
curs. Reconstructions could be used to confirm findings gath-
ered from objects and historical source research, making them
an essential part of this research. Surface composition analyses
like area scanning by XRF, could provide us with information
on whether more lead is present around the grain boundaries of
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the cracks. X-ray computed tomography and ultrasound could
provide information on the morphological and physical proper-
ties of an object.

3 Monitoring of cracks by image pro-
cessing techniques

Up to this day there is no standard or trusted way to monitor
the (in)stability of the cracks. Therefore, the use of image pro-
cessing techniques for the detection of cracks in silver objects
is being explored. Already vast amounts of literature exists on
detecting crack-like patterns in digital images, often referred to
as ridge-valley structure extraction. Examples include the de-
tection of veins or vessels in medical images, fingerprint anal-
ysis, or even the segmentation of roads and rivers from satel-
lite imagery. Common approaches include different types of
thresholding, the use of multi-oriented filters and various mor-
phological transforms. Often, the results obtained with image
processing techniques are further refined by using either super-
vised or unsupervised machine learning algorithms. In an un-
supervised setting, the algorithm attempts at further clustering
pixels by means of their properties (also called features), such
as colour, whether the pixel is part of an edge, or its value after
a filtering operation. In a supervised setting however, the pro-
cess starts with an expert user manually annotating crack pixels
or areas of high crack density. These labelled pixels can then be
employed to train a chosen machine learning algorithm, often
yielding better results compared to the unsupervised approach.

For this application, we first rely on prior art developed for
the detection of cracks in the surface of paintings. An initial re-
sult can be observed in Figure 2, where the detected cracks are
marked in red. The cracks were obtained by filtering the image
with oriented and elongated filters that are designed to empha-
size elongated structures in images [2]. The filtered images
are then thresholded and combined into a single binary image,
marking the locations of the cracks in the original image.

4 Conclusion
First results show that image processing techniques can be used
for the detection of cracks in silver objects. Future research will
consist of further exploring the image processing and machine
learning tools at our disposal for the detection of cracks in dif-
ferent images of silver objects at various zoom levels. Also, it
will be important to develop a standardized way to compare the
results over time, to determine whether the cracks are in fact
progressing.

Figure 2: Initial results of crack detection using the oriented filters of [2].
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Imaging Ancient Chinese Ivory Puzzle Balls: Deducing the make process

R. van Liere1, C-L. Wang2 , A. Kostenko1, I. Garachon2, and K.J. Batenburg1.
1Centrum Wiskunde en Informatica, Amsterdam. 2Rijksmuseum, Amsterdam .

Abstract— In this paper we address questions related to the

make process of ancient Chinese ivory puzzle balls. The approach

we have taken is to image the puzzle balls using x-ray scanning

and image processing to measure morphological properties of the

balls. From the measurements, we can deduce the size and shapes

of the tools used to carve the ivory balls.

1 Introduction

Ancient Chinese ivory puzzle balls are known for their beauty,

finesse and their ability to arouse the curiosity of the viewer.

Puzzle balls consist of several concentric sphere shaped "lay-

ers". Each layer can rotate freely and has a surface carved with

an ornate decorative pattern. In the 18th century, ivory balls

were crafted starting from a single block of ivory using only a

lathe and a collection of sharp knives and L-shaped scalpels.

The Rijksmuseum have two ivory balls in the collection.

AK-NM-7020 (ca 1780) contains 9 concentric layers and has

a radius of 4.3 cm. Ball AK-NM-7019 (dated ca 1750) has a

radius of 8 cm.

Figure 1: Rijksmuseum archive photographs of AK-NM-7020 (left) and AK-

NM-7019 (right). The chains, used to hang balls from ceilings, are also shown.

Both balls have 14 ’peepholes’ through which the enclosed layers can be seen.

In the case of AK-NM-7020, the craftsman has covered 11 peepholes on the

outer layer with ivory carved caps. On AK-NM-7019, a cap has placed on the

top peephole.

The goal of this work is to develop multi-scale acquisition,

image processing, pattern recognition, and visualization tech-

niques that measure morphological properties of ivory puzzle

balls. These properties are used to deduce the make process of

the balls.

2 Methods

Computer tomography scans of the ivory balls were acquired

using the custom build and highly fexible Flex-ray CT scanner,

developed by XRE NV and located at CWI. In order to cap-

ture the fine details in the ivory carvings, balls were acquired

at a resolution of approximately 60 micron, resulting in recon-

structed three dimensional data volumes in the order of 4K
3

voxels.

2.1 Segmentation

Segmentation of the layers is not straight forward. Due to the

decorations on each layer, the contact regions between layers

are irregular and ill defined. As a result, traditional edge based,

region based, or feature based segmentation methods do not

suffice.

A sphere-fitting based segmentation method has been devel-

oped to overcome these difficulties. Informally, the method can

be described in the following steps (see diagram 2) :

1. create binary volume

2. compute the center of mass of the volume

3. trace rays from center of mass to boundary of volume

4. for each ray, determine intersection point of ray with the

inner boundary of the largest sphere

5. iterate until least-square of fitting residuals is small:

• fit sphere with set of intersection points

• remove points with large residuals

6. label white voxels with distance to center greater than ra-

dius

7. go to step 2.

There are some additional details to be dealt with, but the

general idea is that the steps 2-5 segment the outer layer from

the rest of the data. In practice, a few thousand rays are required

in order to obtain adequate fitting values.

p2p3

p1

Figure 2: Tracing three rays through three enclosing spheres. Rays 1 and 2 both

have 4 intersection points. Ray 3 has 6 intersection points. The intersection

points of the largest sphere are labeled p1, p2, p3. The sphere fit procedure

returns the center, radius of the sphere and residuals of pi.

Finally, isosurface meshes of each layer are constructed from

the labeled volume (see figure 3). The meshes are then aligned

to a common center and orientation.

2.2 Measurements

Various morphological properties are computed from the

aligned surface meshes. Computed properties include

• thickness of each layer
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Figure 3: Photo-realistic rendering of layer 1 of AK-NM-7020 (left panel), XY,

YZ, XZ cross-sections of labeled volume (right panels).

• annulus (the distance between layers)

• visibility of each triangle in a surface mesh

• size and shape the geometric patterns on each layer

The layer thickness and annulus between spheres for AK-

NM-7020 are tabulated. Note that the sum of the layer thick-

ness is smaller then sum of the space between the layers.

Layer Thickness Layers Annulus

1 3.5 mm 1-2 2.8 mm

2 1.6 mm 2-2 2.8 mm

3 1.6 mm 3-4 2.7 mm

4 1.6 mm 4-5 2.8 mm

5 1.7 mm 5-6 2.8 mm

6 1.7 mm 6-7 2.7 mm

7 1.8 mm 7-8 2.7 mm

8 1.8 mm 8-9 2.7 mm

9 5.0 mm

total 2.0 cm 2.2 cm

Table 1: Layer thickness (left), annulus between layers (right)

Tool marks left by L-shaped scalpel reside on the inner sur-

face of each layer. These can be seen in the data as concentric

rings around the peepholes on the inner surface of the layer.

Figure 4 shows these patterns on the inner surface of the first

layer. The radius of each circle are measured. For ball AK-

NM-7020 these radii are 27mm , 25mm and 23mm.

Figure 4: Tool marks on the inner surface of the first layer. Three concentric

circles around each peephole are faintly visible (top), annotated view (bottom).

3 Interpretation

The answers to many questions related to the make process of

ivory balls can be deduced by analyzing the measurements. We

pose two example questions:

1. What was the size and shape of L-shaped scalpels used by

the craftsman when separating layers ?

The height of the L-shaped scalpels is bounded by the an-

nulus. For AK-NM-7020, this is approximately 2.8 mil-

limeter. The length of the scalpel is bounded by the pat-

terns found on the inner surface of each layer. On the first

layer there are three such patterns. Hence, the lengths of

the three L-scalpels are 27mm , 25mm and 23mm.

2.8mm
25mm27 mm 23mm

Figure 5: Sizes of three L-shaped scalpels used to separate the first layer.

2. What can the craftsman see when carving geometric pat-

terns on each layer? Is there sufficient light?

This question has been answered by performing a sim-

plistic light simulation on the aligned meshes. A com-

puter graphics lighting model was used to simulate various

lighting conditions. Simulation parameters include the po-

sition of a light source, the brightness of a light source,

and the amount of ambient lighting. Figure 6 illustrates

the output of one simulation. It can be seen that the first

few layers receive sufficient direct light, while the deeper

layers receive much less light. For AK-NM-7020, the first

5 layers are clearly visible, while layers 6,7,8 and 9 are

very much darker.

Figure 6: Light simulation on aligned meshes.

4 Conclusion

We have addressed a number questions related to the make pro-

cess of ivory balls. In particular, we have shown that three L-

shaped scalpels were used to separate the first layer form the

rest of the sphere. Also, the shape and size of the scalpels were

computed.

The general approach taken in this paper is to first scan an art

artifact in a laboratory x-ray setup to acquire a 3D tomogram,

segement the tomogram, and measure various morphological

proprieties of the artifact. These measurements are used to de-

duce aspects of the make process. We believe that this approach

can be applied to study the make process of other art artifacts.
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Abstract— In this work we use Pixel Content Encoders (PCE),
a light-weight image inpainting model, to inpaint missing regions
of paintings. Based on a Convolutional Neural Network (CNN) the
PCE leverages dilated convolutions such that it is able to preserve
fine grained spatial information and input large missing regions of
paintings. Besides image inpainting, we show that without chang-
ing the architecture, the PCE can be used for image extrapolation,
expanding the painting beyond its existing boundaries.

1 Introduction

Reconstructing missing or damaged regions of paintings has
long required a skilled conservator or artist. Retouching or in-
painting is typically only done for small regions, for instance
to hide small defects. Inpainting a larger region requires con-
noisseurship and imagination: the context provides clues as to
how the missing region might have looked, but generally there
is no definitive evidence. Therefore, sometimes the choice is
made to inpaint in a conservative manner. However, with the
emergence of powerful computer vision methods specialising
in inpainting [1, 2], it has become possible to explore what a
potential inpainting result might look like, without physically
changing the painting.

Although image inpainting algorithms are not a novel de-
velopment, previous works has typically only explored inpaint-
ing of small regions (i.e., cracks) in paintings [1]. Whereas re-
cent work applied to natural images has shown that approaches
based on Convolutional Neural Networks (CNN) are capable
of inpainting large missing image regions in a manner which is
consistent with the context [2]. In this work we explore (dig-
ital) inpainting of large regions in paintings using Pixel Con-
text Encoder (PCE). PCE are a light-weight alternative to previ-
ously proposed CNN-based inpainting models which are based
on complex network architectures consisting of many trainable
parameters, resulting in a necessity of large amounts of data,
and often long training times. Our results show that PCE out-
perform previous work on an inpainting task, and that PCE can
be used - without modification - for painting extrapolation.

2 Pixel Context Encoders

The architecture of Pixel Context Encoders (PCE) follows that
of encoder-decoder Convolutional Neural Networks used for
image generation[3]. In such an architecture the encoder com-
presses the input, and the decoder uses the compressed repre-
sentation (i.e., the bottleneck) to generate the output. By incor-
porating dilated convolutions we reduce the spatial compres-
sion in the encoding stage which allows the model to preserve
fine grained spatial information. Moreover, as compared to reg-
ular convolutions, dilated convolutions can cover the same re-
ceptive field with significantly fewer parameters.

PCEs are trained through self-supervision; an image is ar-
tificially corrupted, and the model is trained to regress back
the uncorrupted ground-truth content. The PCE F takes an
image x and a binary mask M (the binary mask M is one
for masked pixels, and zero for the pixels which are provided)
and aims to generate plausible content for the masked content
F (x,M). During training we rely on two loss functions to opti-
mise the network: a L1 loss and a GAN loss. For the GAN loss
we specifically use the PatchGAN discriminator introduced by
Isola et al. [3].

Experimental results3

To demonstrate the potential of PCE as a tool for painting re-
construction we demonstrate it on two tasks, inpainting and
painting extrapolation.

Datasets3.1

The main dataset used in this work is the “Painters by Num-
bers” dataset (PaintersN) as published on Kaggle1, and con-
sists of 103, 250 photographic reproductions of artworks by
well over a thousand different artists.

Additionally, for the quantitative evaluation we report the
performance of the inpainting models on the subset of 100, 000
images that Pathak et al. [2] selected from the ImageNet dataset
[4]. The performance is reported on the complete ImageNet
validation set consisting of 50, 000 images.

Inpainting3.2

To compare PCE to previous work we perform centre region in-
painting. In centre region inpainting the central 64× 64 region
is removed from a 128×128 image and subsequently inpainted
by the inpainting models. In Table 1 the results of this compar-
ison between Context Encoders [2] (CE) and PCE are shown.
Both models are trained and evaluated on the ImageNet dataset
and the PaintersN dataset, to explore the generalisability of the
models. The performance of the PCE model exceeds that of
the model by Pathak et al. for both datasets. Nonetheless, both
models perform better on the PaintersN dataset, implying that
this might be an easier dataset to inpaint on. Overall, the PCE
model trained on the 100, 000 image subset of ImageNet per-
forms best, achieving the lowest RMSE and highest PSNR on
both datasets.

In addition to quantitative results we show in Figure 1 the
results of a qualitative comparison between CE [2] and the PCE
model.

1https://www.kaggle.com/c/painter-by-numbers
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Table 1: Center region inpainting results on 128× 128 images with a 64× 64
masked region. RMSE and PSNR for models trained on the ImageNet and
PaintersN datasets (horizontally), and evaluated on both datasets (vertically).

ImageNet PaintersN
Trained on Model RMSE PSNR RMSE PSNR

Imagenet CE [2] 43.12 15.44 40.69 15.94
PCE 22.88 20.94 22.53 21.08

PaintersN CE [2] 43.69 15.32 40.58 15.96
PCE 24.35 20.40 23.33 20.77

Ground Truth Input CE PCE

Figure 1: Comparison between CE [2] and PCE, on inpainting a 64×64 region
in 128× 128 images taken from the PaintersN dataset.

Ground Truth Input PCE

Figure 2: Examples produced by the PCE model, on extrapolating 192 × 192
regions taken from 256× 256 images.

3.3 Painting Extrapolation

Besides inpainting we also explore painting extrapolation; gen-
erating novel content beyond the existing painting boundaries.
By training a PCE to reconstruct the content on the boundary
of an image (effectively inverting the centre region mask), we
are able to teach the model to extrapolate paintings.

In Figure 2 we show two examples obtained through painting
extrapolation. Based on only the provided input the PCE is able
to generate novel content for the 64 pixel band surrounding the
input. Although the output does not exactly match the input,
the generated output does appear plausible.

Additionally, in Figure 3 we show images obtained by apply-
ing the PCE trained for painting extrapolation to uncorrupted
images, resized to 192× 192 pixels. By resizing the images to
the resolution of the region the model was train on, the model
will generate a band of 64 pixels of novel content, for which
there is no ground truth.

Original PCE

Figure 3: Examples produced by the PCE model, on extrapolating 192 × 192
images beyond their current boundaries.

4 Conclusion
For this work we trained and evaluated the inpainting perfor-
mance of PCE on a dataset of paintings and a dataset of natu-
ral images (ImageNet). The results show that regardless of the
dataset PCE were trained on they outperform previous work
on either dataset, even when considering cross-dataset perfor-
mance (i.e., training on natural images and evaluating on paint-
ings, and vice versa). Based on the cross-dataset performance
we pose that PCE solve the inpainting problem in a largely
data-agnostic manner. By encoding the context surrounding the
missing region PCE are able to generate plausible content for
the missing region in a manner that is coherent with the context.

We conclude that PCE offer a promising avenue for image in-
painting and the digital restoration of paintings. With an order
of magnitude fewer model parameters than comparable inpaint-
ing models, PCE obtain state-of-the-art performance on bench-
mark datasets of paintings and natural images. Moreover, due
to the flexibility of the PCE architecture it can be used for other
image generation tasks, such as inpainting larger regions and
image extrapolation.
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Abstract: 

Handwriting comparison and identification, e.g. in the setting of forensics, has been widely 

addressed over the years. However, even in the case of modern documents, the proposed 

computerized solutions are quite unsatisfactory. For historical documents, such problems are 

worsened, due to the inscriptions’ preservation conditions. In the following lecture, we will present 

an attempt at addressing such a problem in the setting of First Temple Period inscriptions, stemming 

from the isolated military outpost of Arad (ca. 600 BCE). The solution we propose comprises: (A) 

Acquiring better imagery of the inscriptions using multispectral techniques; (B) Restoring characters 

via approximation of their composing strokes, represented as a spline-based structure, and 

estimated by an optimization procedure; (C) Feature extraction and distance calculation - creation of 

feature vectors describing various aspects of a specific character based upon its deviation from all 

other characters; (D) Conducting an experiment to test a null hypothesis that two given inscriptions 

were written by the same author. Applying this approach to the Arad corpus of inscriptions resulted 

in: (i) The discovery of a brand new inscription on the back side of a well known inscription (half a 

century after being unearthed); (ii) Empirical evidence regarding the literacy rates in the Kingdom of 

Judah on the eve of its destruction by Nebuchadnezzar the Babylonian king. 
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